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The measurement of power spectra is a problem of steadily increasing im-
portance which appears to some to be primarily a problem in statistical esti-
mation. Others may see it as a problem of instrumentation, recording and
analysis which vitally involves the ideas of transmission theory. Actually,
ideas and techniques from both fields are needed. When they are combined,
they provide a basis for developing the insight necessary (?) to plan both the
acquisition of adequale data and sound procedures for ils reduction to mean-
ingful estimates and (i7) to interpret these estimates correctly and usefully.
This account attempts to provide and relate the necessary ideas and ‘tech-
niques in reasonable detail. Part 11 of this article will appear in the March
issue of THE JOURNAL.
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I. INTRODUCTION

Communications systems and data-processing systems are generally
required to handle a large variety of signals in the presence of noise.
The design of these systems depends to a large extent upon the statisti-
cal properties of both the signals and the noise. In most cases, the noises
may be represented, or approximated, as stationary Gaussian random
processes with zero averages, so that all of their relevant statistical prop-
erties will be contained by the autocovariance function or the power
spectrum. In many cases, the signals may also be represented, or ap-
proximated, as stationary Gaussian random processes with zero averages.

Noises, signals, or other ensembles of functions (given continuously or
at intervals) which are approximately stationary but not Gaussian are
often also usefully studied in terms of autocovariance functions or power
spectra. Although the average and the spectrum are no longer the only
relevant statistical properties, they are usually the most useful ones.
Thus, we shall do well to keep as much of our treatment generally appli-
cable as possible.

In almost every case, the autocovariance funetion or power spectrum
of either the noise or the signal will be of interest and importance.

To determine the autocovariance function or power spectrum of an
(approximately) stationary random process, we are often reduced to
the necessity of measurement and computation. Exact determination
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would require a perfectly-measured, infinitely-long piece of a random
function (or a collection of pieces of infinite total length), and would re-
quire infinitely detailed computations. Both of these requirements are,
of course, impractical. Approximate determination, on the other hand,
raises the questions of how much data of a given accuracy will be re-
quired, what computational approach should be used, and how much re-
liance may be placed upon the results. Practically useful answers to
these questions may be found by combining results from transmission
theory and the theory of statistical estimation. These answers prove to
be relatively simple. The only major difficulty in their practical applica-
tion is the extensiveness of the data required for highly precise estimates.
This requirement is an inherent, irrevocable characteristic of such ran-
dom processes.

In this account we shall treat only the measurement of spectra of in-
dividual noises or signals. The measurement and utilization of the cross-
spectra of pairs of series is also important, but is beyond our present
scope. Questions of distribution and anticipated variability of cross-
spectral estimates, and of certain estimates derived from them, have re-
cently been cleared up by Goodman.'

It is natural to feel that the measurement of power spectra is simple,
and that no problems deserving extended discussion arise. After all, are
there not commercial “wave analyzers’” of many sorts; have not Fourier
series served for many years to analyze the frequencies of many signals,
(musical instruments, human voices, ete.)? Why should there be a serious
problem?

There are two reasons why elementary methods fail us rather fre-
quently. On the one hand, the signal may not be available in indefinitely
long time stretches. Either the conditions of observation, experimental
or otherwise, or the difficulties of careful recording may make it imprac-
tical to have so much data that we can afford to analyze carelessly. (The
examples of Sections 26 to 28, involving spectra of radar tracking,
noise in very short-lived devices, and irregularities in the earth’s rota-
tion, respectively, all illustrate this point). Even if observation and
recording can be afforded, the cost of computation often forces careful
analysis.

On the other hand, the random nature of much noise, and some sig-
nals, in which the relative amplitudes and phases of different frequencies
are not stably related (in contrast to voices and musical notes), intro-
duces much more difficulty with sampling fluctuations and provides
much more significant appearing, thus much more misleading statistical
artefacts than experience with simpler signals would lead investigators
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to expect. (In postwar oceanography, for example, high mechanical in-
genuity was expended in the construction of simple and effective wave
analysers to produce detailed spectra of ocean waves. The results were
quite misleading, because the frequency resolution obtained was too high
for the limited length of records used, and almost the entire appearance
of the resulting spectra was an illusion due to the particular fluetuations
of the particular record. The use of broader filters has since led to mean-
ingful results which could be related to physically satisfying theories.)
All too often, the practical study of spectra requires care.

Effective measurement of power spectra requires understanding of a
number of considerations and action guided by all of them. Explaining
each individual consideration is necessary, but it is equally necessary to
explain how they fit together. The general structure of this description
of spectral measurement is the following: an introduction to the concepts
(Sections 1-3), brief accounts of individual considerations (Sections
4-19), accounts of how these considerations are assembled in analysis
(Sections 20-21), and planning for measurement (Sections 22-28,
which include discussion of examples), and Sections in Part IT giving
the details supporting the earlier sections.

We have attempted to provide, somewhere, most of the facts and atti-
tudes that are needed in the practical analysis of (single) power spectra.

Readers interested in either completing their present knowledge or in
gaining a brief overview of the subject may wish to proceed next to Sec-
tions 20ff, whence they can be referred to specific sections of interest.
For some, reading of Sections 1-3 may be a helpful preliminary for See-
tions 20ff. For others, who want to build more solidly as they go, reading
straight through, perhaps with considerable cross-reference to Part II,
may be best. '

A function of time X (¢) generated by a random (or stochastic) process
is one of an ensemble of random functions which might be generated by
the process. The value of the function at any particular point in time is
thus a random variable with a probability distribution induced by the
ensemble. Furthermore, the values of the function at any particular set
of points, say ¢ = &, t2, -+ -, . , have an n-dimensional joint probability
distribution also induced by the ensemble. Such probability distributions
have an important bearing on the design of any communication system
or data-processing system which must handle an output from such a
random process, be this output “signal” or “noise”.

We shall often, but not always, assume that the random process is
Gaussian. This means that, for every n, &, o, -+, {, , the joint proba-
bility distribution of
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X(tl)x X(t2)7 T X(tn)!

is an n-dimensional Gaussian or normal distribution. Each such distribu-
tion is completely determined by the ensemble averages

X)) = ave | X(t)},
and by the covariances
Ci; = cov { X(t:), X(¢,))
= ave {[X(t) — X(t)]-[X(t;) — X(1,)]} .

As a matter of convenience in development we will assume that the
averages X (¢;) are zero. The covariances then reduce to

Ciy; = ave {X({)-X(t)}.

Throughout, we will assume that the random process is stationary (that
is, temporally homogeneous) in the sense that it is unaffected by trans-
lations of the origin for time. The covariances C;; now depend only on
the time separation {; — {; so that

Cii = Ct: — t).

Thus, the noise is completely specified by a single function of a single
variable. In particular, C(0) is the variance (for zero average, the average
square) of X(2).

If the process were stationary, with zero averages, but were not
Gaussian, then knowledge of the covariance as a function of lag, although
providing a very large amount of useful information, would not com-
pletely specify the process. The results of this paper fall into two cate-
gories: (i) those relating to average values of spectral estimates, and
(ii) those relating to variability of spectral estimates. The average-value
results apply generally under the assumptions of stationarity (and zero
averages), and do not depend upon the Gaussian assumption. The varia-
bility results are exact under the Gaussian assumption, and are usually
rather good approximations otherwise. Thus, our results have practical
value for noises and signals which are not closely Gaussian.

Results about variability are naturally used: (i) for planning the ap-
proximate extent of measurement effort, (ii) for indicating the presence
of changes, during a series of measurements, in the quantities estimated,
and (iii) as a means of judging the precision of an over-all estimate. The
results given here are mainly for the first planning use. The additional
uncertainties in actual variability due to either non-normality of distri-
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bution, or to changing of conditions between runs, or to both, are often
all too real, but are rarely large enough to affect planning seriously. The
same is true of mild nonstationarity. The Gaussian, stationary results
can also be applied to the second use, the detection of changes in the true
spectrum, but considerable caution is in order. The precision of final
over-all values is ordinarily far more wisely judged from the observed
consistency of repeated measurements (as by analysis of variance of
logarithms of various spectral density estimates at the same nominal fre-
quency) than from any theoretical variability based on a Gaussian as-
sumption.

Communications engineers are more accustomed to work with a single
time function of infinite extent than with an ensemble of finite pieces (of
such functions). It is perhaps fortunate, therefore, that averages across
an ensemble are equivalent (ergodicity) to averages over time along a
single function of infinite extent, whenever a process is stationary,
Gaussian, has zero averages, and has a continuous power spectrum (no
“lines”). (If the process were not stationary the single function approach
could not be used in this way.)

Since we seek to make this account as intuitive as possible for com-
munications engineers, we shall define transforms, and make many other
computations in terms of averages along a single funetion (as limits of
integrals over centered intervals). In dealing with more specifically sta-
tistical issues, however, we shall write “ave” for average value, “‘var”
for variance and “cov”’ for covariance, and shall do nothing to hinder
the interpretation of these operators as acting across the ensemble.
(Those who wish can also think of them in single function terms.)

The covariance at lag 7, in single function terms, is given by

7/2
C(r) = limlf XXt + 7)-dt.

T—c0 —rl2
In ensemble terms, we would write merely
C(r) = ave {X(1)-X( + )}.

The function C(7) is frequently called the autocorrelation function,
although historical usage in both statistics and the theory of turbulence
(Taylor®) shows that this name should be applied to the (normalized)
ratio C(7)/C(0). We shall call C(r) the autocovariance function. This
name is appropriate to our formal definition of C(r) because we have
assumed that the averages of our process are all zero. Whenever we give
up the assumption of zero averages, as we must almost always do when
dealing with actual data, we shall use
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ave | X()-X({t + 7)} = average lagged product,
ave {[X(t) — X]-[X(t + ) — X]} = autocovariance function,

where X is the common value of ave {X(¢)} and ave {X(¢ + 7)}, thus
preserving accurate usage.

Because of the direct relationship of the joint probability distribution
to the autocovariance function, much of the statistical attention given
to Gaussian stationary time series (time-sampled random functions) has
been expressed in terms of serial-correlation coefficients (corresponding
to lag-sampled autocovariance functions).

A stationary Gaussian random process may be regarded (e.g. Rice®) as
the result of passing white Gaussian noise through a fixed linear network
with a preseribed transmission function. White Gaussian noise, in turn,
may be regarded as the superposition of the outputs of a set of simple
harmonic oseillators (continuously infinite in number) with

(a) a continuous distribution in frequency,*

(b) uniform amplitude over the significant frequency range of the
transmission system, and

{e) independent and random phases.

This point of view is particularly suited to the techniques employed by
communications engineers. It is therefore not surprising that communi-
cations engineers have dealt with stationary Gaussian random processes
almost entirely in terms of power spectra.

Because the autocovariance funetion and the power spectrum are
Fourier transforms of each other, it would at first appear to be purely
a matter of convenience which one is used in any particular situation.
Indeed, optimum filter characteristics for the protection of signal against
noise in communications systems and in many types of computing de-
vices have, on oceasion, been determined by the use of the autocovari-
ance function. In practice, however, the filter designer almost invariably
turns to the power spectrum as the final eriterion of adequate design
and performance.

In practice also, where the autocovariance funetion or the power spec-
trum must be determined by measurement and computation, and then
interpreted, the choice is now heavily weighted in favor of interpretation
of the power spectrum. Although a great deal of theoretical work has
been done on the probability distribution of the serial-correlation co-
efficients for Gaussian stationary time series of finite length, with a view
to the estimation of the confidence which may be placed upon practical

* The term “‘frequency’” is used throughout this paper in the communications

engineer’s sense, viz., cycles per second of a sinusoidal wave. (Exceptional uses
in the statistician’s sense are explicitly noted.)
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results, the criteria which have been developed along this line are so
complicated that it is extremely difficult to apply them in practice,
where the joint distribution must be considered. On the other hand, the
situation with respect to the power spectrum is now very satisfactory
for practical purposes. This stems from results obtained by Tukey,'
and in part independently by Bartlett,’ about nine years ago, when
studies were made of the effects of sampling, of finite length of series,
and of choice of computational procedure on the behavior of the esti-
mated power spectrum. Since that time, applications to such diverse
fields as ocean waves (Marks and Pierson’), aerodynamics (Press and
Houbolt™), meteorology (Panofsky®), and seismology (Wadsworth,
Robinson, Bryan, and Hurley®), have shown the practical applicability
of these results to a wide variety of physical time series.

Shortly after these studies first reached the stage of practical useful-
ness, the theoretical analysis was reformulated by Blackman, who ex-
pressed it from the point of view of transmission theory, for presentation
to members of the technical staff of Bell Telephone Laboratories
(Out-of-Hours Courses 1950-1951, Communications Development
Training Program 1950-1952).

More recent contributions (1950-1957) to the theory of power spec-
trum estimation have been reviewed by Bartlett and Medhi," by Bart-
lett," and by Grenander and Rosenblatt.”

2. AUTOCOVARIANCE FUNCTIONS AND POWER SPECTRA
Tirst, let us consider the ideal case. The autocovariance function which

was defined in the preceding section by

. 1 /2
C() = lim [ XX+ )t

may be reduced to the form
¢ = [ P ap
where
1 Ti2 . 2
P(f) = lim -‘f X() -
T\ Lrre

T

(cp. Section B.2). The function of frequency P(f) describes the power
spectrum of the stationary random process considered. More precisely
P(f) df represents the contribution to the variance from frequencies be-
tween f and (f + df). If we think of X(?) as a voltage across (or current
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through) a pure resistance of one ohm, the long-time average power dis-
sipated in the resistance will be strictly proportional to the variance of
X (¢). This important special case is the excuse for the adjective “power™.
The pure statistician might prefer to refer to the covariance spectrum or
to the second moment spectrum rather than to the power spectrum.
For precision, we shall often refer to P(f) as the spectral densily or
power spectral density. When no confusion is likely, we may call P(f)
merely the power spectrum.

The relation exhibiting the autocovariance function as the Fourier
transform of the power spectrum may be inverted to express the power
spectrum as the Fourier transform of the autocovariance function. Thus,
we have

P = [ @ ar.
—a0
The autocovariance function C(7) and the power spectrum P(f) are,
formally at least, even functions of their respective arguments. Hence,
the relation between them may be expressed more simply as two-sided
cosine transforms, viz.

C(r)

f_ " P(f)-cos 2nfr-df,

and

PN j_.: C(r)-cos 2afr-dr;

or perhaps even more simply, as one-sided cosine transforms, viz.

C@) = 2 f: P(f)-cos 2nfr-df
and

P(f) = Zj:o C(r)-cos 2xfr-dr.

Results are usually more conveniently developed in terms of the two-
sided forms than in terms of the one-sided forms. In Sections A.3 and
B.4 for example, the use of the two-sided forms with exponential kernels
will be found to simplify considerably the expression of the operation of
convolution between functions of lag or of frequency. In Section B.6, the
use of the two-sided forms with exponential kernels avoids some compli-
cated manipulations of trigonometric identities in the early stages of the
development,.
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It should be particularly noted that
ave (X)Xt + 7)) = fﬂw 2P(f)-cos 2nfr-df
and that (setting + = 0)
var (X(1)] = f: 2P(f) - df.

Thus, it is evident that our definition of the power spectrum differs from
the usual one which associates the power spectrum only with positive
frequencies. References to the power spectrum in practice are usually
in terms of a density 2P(f) over 0 = f < = only.

3. THE PRACTICAL SITUATION

In practice we can obtain only a limited number of pieces of X(¢)
of finite length. Each piece may be regarded as a sample drawn from a
population or universe of pieces of X(f) of the same length. The reduc-
tion of the data will therefore yield no more than estimates of the auto-
covariance function and of the power spectrum — estimates which are
subject to sampling variations and to biases in the usual statistical sense.
This situation is further complicated in those cases in which we can
measure, or desire to use, only values of X (¢) at uniformly spaced values
of ¢ within each piece of X (¢); in other words, those cases in which we
are dealing with classical time series (discrete time) rather than with
time functions (continuous time).

The theoretical study of sampling variability and bias is much simpler
in the case of the estimates of the power spectrum than in the case of
the estimates of the autocovariance function (or of serial-correlation co-
efficients). This reflects the fact that, as we consider longer and longer
records, and two narrow frequency bands with an arbitrarily small but
fixed separation, we may find estimates of the power in these frequency
bands which both (i) become arbitrarily precise, and (ii) become arbi-
trarily nearly (statistically) independent. The existence of such esti-
mates is another particular consequence of the Gaussian character, as
expressible in terms of “random and independent phases”, of the ran-
dom process from which we have one or more samples.

Use of the power spectrum has an additional advantage over use of
the autocovariance function. In almost all practical situations, the data
analyzed does not represent the actual output of the random process.
In such cases the data will have been modified, appreciably if not radi-
cally, by the transmission characteristics of the devices employed to se-
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cure the data. This modification of the data may in fact be intentional,
as we shall see when we come to the discussion of “prewhitening” in
Section 15. In any case, the estimates will have to be corrected for the
effects of this modification of the data. For estimates of the power spec-
trum, the correction procedure is a simple division of a frequency func-
tion by another frequency function. For estimates of the autocovariance
function, however, the correction procedure will require a Fourier trans-
formation, division of the resulting frequency function by another
frequency function, and an inverse Fourier transformation. This whole
sequence of operations on the autocovariance function is the only prac-
tical procedure for the inversion of the convolution (see Appendix A.3)
which is the effect to be corrected for. (Details are given at the end of
Section B.3.)

As we shall see, the measurements and computational operations may
involve the use of either analog or digital computation and handling of
either continuous “signals” or discrete data. (Whatever be its rela-
tion to some communication or data-handling system, we shall call con-
tinuous-time signals or noise which we are analyzing “signals”, while dis-
crete-time signals or noise, or discrete-time samples thereof, will be
called data.) In actual practice, and for well-defined reasons of in-
strumentation and computation engineering, only a few of the many
possible combinations are used.

Spectrum analysis by analog computation is almost always applied
to continuous “signals”, and makes use of filtering rather than going
through autocovariance or mean lagged products. Digital computation
must be carried out on discrete data, perhaps time-sampled from a
continuous “signal”’, and preferably uses an indirect route via mean lagged
products rather than trying to isolate individual frequency bands di-
rectly. In either case, each data value must enter several computations,
and it is rarely economic to carry these computations out directly in real
time, especially since there will not usually be enough such analysis on a
regular basis to saturate the working capacity of the analog or digital
computer used. Consequently, recording, either of “signals’ or of data or
of both, is almost inevitable.

Thus, five stages will be important in nearly every case:

(1) sensing (pick-up, conversion, etc.)

(2) transmission (to recorder or, possibly, to computer)

(3) recording (including play-back, and, perhaps, time-sampling)

(4) computation (formulas, computing circuit performance, etc.)

(5) interpretation.

In every one of these stages, quality of performance (noise level, dis-
tortion, ete.) will be of importance.
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The present account concentrates on the computational and inter-
pretational stages, but indicates, from time to time, those considerations
in the other stages which are peculiar to power spectrum analysis.

We have been unable to find a wholly satisfactory arrangement for
the material we wish to present. In order to facilitate a relatively easy
once-over, these introductory sections now continue into a condensed
account, from which proofs, some reasons, and many helpful remarks
have been postponed to the Appendix and sections in Part IT. Readers in-
terested in a survey may find it adequate to read only the condensed
account. Others may find it best to skim this condensed account first, to
read Appendix A next, and then to study similarly numbered sections of
Part IT and the condensed account,

The continuous record of finite length will be treated first (Sections
4-11); the modifications required for the diserete equally spaced record
are covered next (Sections 12-21), and the opening account concludes
with a discussion of the planning and analysis of measurement programs
(Sections 22-28),

Appendix A (Sections A.1 to A.6) treats fundamental Fourier tech-
niques, and the transform-pairs most closely associated with diffraction,
in both the continuous and equi-spaced cases.

Each section of Part II relates to the similarly numbered section of
the main body, and contains details of derivations, further reasons, and
additional helpful remarks.

Definitions of the technical terms, arranged alphabetically for ref-
erence, are included at the end of Part 1. Similar definitions of the nota-
tion will be given at the end of Part IT.

Conrtinvous ReEcorps oF FINniTE LENGTH
4. FUNDAMENTALS

Given a continuous record of finite length, it is clear that we cannot
estimate the autocovariance function C(r) for arbitrarily long lags.
Surely, no estimate can be made for lags longer than the record. Fur-
thermore, as we will find in due course, it is usually not desirable to use
lags longer than a moderate fraction (perhaps 5 or 10 per cent) of the
length of the record. Thus, in place of

T/2

C() = lim f X)X + 1) -dt

for all values of 7, we will have at our disposal

(Ta—I7])/2 'r) 'r)
'(: t — = X t =" ” = (Y -
(o = 7= lr To — ] f(r..—l e ( 2 ( Ta) n(=)
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only for | 7| £ T < T., where T, is the length of the record, and 7',
is the maximum lag which we desire to use. We will call Coo(r) the ap-
parent aulocovariance function, since (on account of ergodicity) its
average value is C(7) for | 7| £ T...

The class of estimates for the power spectrum with which we are chiefly
concerned will be derived from a modified apparent aulocovariance function
by Fourier transformation. While the modified apparent autocovariance
functions, which are obtained by multiplying the apparent autocovari-
ance function by suitable even functions of r, are often far from being
respectable estimates of the true autocovariance function, their trans-
forms are very respectable estimates of smoothed values of the true spec-
tral density.

Let Di(7) be a prescribed even function of 7, subject to the restrictions
Dy0) = 1, and Dy(r) = O for | 7| > Tw, (Where i = 0, 1, 2, 3, 4, de-
pending upon the shape of D,(7) for | r| < 7',), and let the correspond-
ing modified apparent autocovariance funetion be defined by

Ci(7) = Di(r)-Cu(7).

We may regard D(7) as a window of variable transmission which modi-
fies the values of Cu(r) differently for different lags. It is therefore
natural to call D;(7) a lag window.

For any lag window which meets the conditions stated above, Ci(r)
is calculable from the data. I'urther, it is clear that Ci(vr) = 0
for | 7| > T although Cu(r) was not defined there. Because Ci(r)
is defined for all values of r, it has a perfectly definite Fourier transform
Pi(f), which should satisfy the symbolic relation,

Pi(f) = Qif) * Po(f)

where Q:(f) is the Fourier transform of D;(r), the asterisk indicates con-
volution (see Appendix A.3 for discussion), and P(f) is the Fourier
transform of Cu(7). However, Py(f) is not determinate because Cy(r)
is not specified for | 7| > T (and its definition cannot be directly ex-
tended beyond | 7| = T,). Nevertheless, since

ave {Ci(r)} = Di(r)-C(r)
where C(7) is the true autocovariance function, it follows that
ave [P} = Q«f) » P(f)

where P(f) is the true power spectrum, that is, the Fourier transform
of C'(7). The average may be thought of as either across the ensemble, or
along time. (The latter type of averaging would correspond to replacing
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X(t) by X(¢ — X), thus changing the stretch of X () which is observed,
and then averaging over A.) The corresponding explicit relation, viz.

ave (P} = [ @ = 9P -af

exhibits the average value of P;(fi) as a smoothing (average-over-fre-
quency) of the true power spectrum density P(f) over frequencies ‘‘near”
f1 with weights proportional to @,(fi — f). In a manner of speaking P;(f;)
is the collected impression of the true power spectrum P(f) obtained
through a window of variable transmission @Q.(fi — f). It is therefore
natural to eall Q;(f) the spectral window corresponding to the lag window
Di(7).

The form just given for ave {P;(fi)} is natural for our two-sided defi-
nition of power spectra, but, in order to view the result from the stand-
point, of transmission theory for real-valued signals, it is convenient to
express the result in a form appropriate to a one-sided definition of power
spectra. Taking advantage of the fact that Q.(f) and P(f) areeven func-
tions, we may write

ave [2P(f1)] = [ " HAS £ 2P () -df

where
H{(f; 1) = Q((+ )+ Q(f = f)

and where we recall that 2P(f) df is the amount of power between f
and (f + df) in the one-sided true power spectrum. Similarly, 2P(f) df
is the amount of power between f and (f + df) in the one-sided estimated
power spectrum. The function H,(f; fi) has one of the necessary proper-
ties of a physically realizable power transfer function inasmuch as it is
an even function of f as well as of f; . In general, however, it does not
have the property of being non-negative at all frequencies f. Neverthe-
less, it is a convenient function to use in the analysis of the variability
of the estimated power spectrum. It will be convenient to regard the
average value of the smoothed power density estimate ave {2P(f1)}
as the result of passing the true power spectrum, through a “network”
with power transfer function H:(f; ).

We see that our procedures will lead us to estimates whose average
values are a smoothing (average-over-frequency) of the true power spec-
tral density P(f) over frequencies “near” f;, and not to estimates of
P(fy) itself. The problem of choosing the shape of the lag window D,(r)
so that its Fourier transform Q(f) will be concentrated near f = 0 is
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almost identical to the problem of choosing an intensity distribution
along an antenna so that most of the radiation from the antenna will
fall in a narrow beam. IFrom this analogy we will use such terms as main
lobe and side lobes for the principal maximum and subsidiary extrema
of Q.(f). (Indeed, any attempt to confine the power transfer function to
too narrow a frequency band — too narrow in comparison with the re-
ciprocal of the longest lag used — would be analogous to an attempt to
construct a practical hyperdirective antenna.)

It is not surprising that we are led to estimate a smoothed power spec-
trum. With only a finite length of X(¢) available, we should not expect
to be able to identify frequencies exactly, and are, indeed, unable to do
0. (The presence of neighboring frequencies with random phases will
have effects similar to those of noise in preventing such identification.)

5. TWO PARTICULAR WINDOW PAIRS

In order to specify a particular family of estimates within the class
of estimates defined in the preceding section, we have only to specify
Di(r) or Q{f). We would like to concentrate the main lobe of Q:(f)
near f = 0, keeping the side lobes as low as feasible. In order to concen-
trate the main lobe we have to make D.(7) flat and rather blocky. In
order to reduce the side lobes, however, we have to make D;(r} smooth
and gently changing. Since D;(r) must vanish for | 7| > T'w we must
compromise. So far, cut-and-try inquiry has been more powerful in find-
ing good compromises than has any particular theory.

A simple and convenient compromise is represented by the lag win-
dow (whose use is called “hanning”)

Dy(r) = % (1 + cos g,i) for |7 < Tw

=0 for |7] > Tw.

(Window pairs 0 and 1 are discussed in Section B.5.) An alternative
compromise is represented by the lag window (whose use is called “ham-
ming’’)

for it < Tw

Dy(r) = 0.54 + 0.46 cos

T
Tm
=0 for  |7|> Th.

These lag windows and the corresponding spectral windows are illus-
trated in Fig. 1. Notice that the main lobes are four times as wide as the
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Fig. 1 — Lag windows D2 and ;. Spectral windows @ and &,.

side lobes (excepting the split side lobes nearest the main lobes), and
that the (normal) side lobe width is 1/(2T ).

The general nature of the spectral windows in these two pairs is the
same: a main lobe, side lobes at most 1 per cent or 2 per cent of the
height of the main lobe. There are differences, which are sometimes rele-
vant, but these may not be obvious. The two most important of these
differences are:

(a) The highest sidelobe for the “hamming” (spectral) window is about
1 the height of the highest side lobe for the “hanning” window,

(b) The heights of the side lobes for the “hanning” window fall off
more rapidly than do those for the “hamming” window.

One difference favors one pair, and one the other.
These and several other window pairs are discussed in Section B.5.

6. COVARIABILITY OF ESTIMATES — BASIC RESULT

It is shown in Section B.6 that, strictly only under Gaussian cir-
cumstances, the covariance of any two power density estimates of the
sort we have been considering is given to a good degree of approxima-
tion by
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cov (20450, 2P ) & [ HAS IS £ ()

where the power-variance spectrum T'(f) depends only on the true power
speetrum P(f) and the effective record length T , as described below.
Thus, we may regard the covariance of the two power density estimates
as the result of passing the power variance spectrum I'(f) through two
networks in tandem, one with power transfer function H,(f; f1), the other
with power transfer function Hf; f»). In other words, we may regard
the covariance (of the estimates of the power spectrum) as the power
remaining from the power-variance spectrum T(f) after passing through
the twe windows H,(f; f1) and H;(f; f.) associated with the estimates
themselves. If the windows do not overlap, the estimales do nol covary
(at least not in terms of second moments).
In particular, of course,

var {2P(f1)} = cov {2P(f1), 2P:«(f1)}
~ [ T HS £ 2T () df

to which we can give a similar interpretation.
These results would become exact if we were to replace Cyo(r) by

N (Tr—1'm) 12 T T

Colr) = T, — T f(u",,—a' m 12 ( 2) X(t T 2) i
where| 7| £ T,, < T».In Cy(r) weaveraged X(t — (/2))-X(t + (+/2))
over an interval of ¢ of length 7', — | 7|, varying with 7. In Coo(r) we
would be averaging X({ — (7/2))-X(t + (7/2)) over an interval of { of
length T, — 7, independent of . We could actually do this because
[t &= (+/2)| = Tw/2 for | 7| < T . However, for values of | | less
than 7T, , Co(r) would not make use of some values of X(t — (7/2))-
X(t + (r/2)) which are used in Cy(r). Thus, Co(r) would be wasteful.
It seems best, therefore, to use Cy(r) for computation, but to approxi-
mate its variability by the variability corresponding to a Cgo(7) which
could not be calculated from the actual values. This “approximate”
hypothetical Co(7) involves a fixed range of integration T part way
between T, — T.. and T, . The situation is illustrated in Fig. 2, where
the ranges of integration are shown for the actually “feasible” Coo(7),
for the Cp(7) which “wastes not”, and for the Coo(r) which we use to
“gpproximate’ Cy(r). The shaded areas delineate the products which
are actually available,
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The best choice of an intermediate value depends somewhat upon the
D;() and D;(7) involved, and is discussed in Section B.6. In practically
useful cases we may take

T, =T, — iT,.

The power-variance spectrum is given approximately and closely by

r(f) =4 [ m P(f+1)-P(f - f’)-(Si“ - T”)' df' (' = 2=f).

&',

If we have p pieces of total length T, , and if, in computing our estimate
of C'(7) for each 7, we combineall availablelagged products

X(t = (7/2))-X(t + (7/2))
without regard to which piece they came from, then we may use this for-

mula for I'(f) with

A
Th=Ty—gTn

as a satisfactory approximation for the effective total length.

Ta=Tm 7l Tn—=Tm
S "
% / Coo(7T)
A
Tn o Tn t
7z z
|
|
iA b,
/ 9 Coo(7)
/ T,
i Tn=Tm o Tn—Tm
2 2
] 1
H H
7 |
/ I Clol7)
! A /%5 .
Tn" 4] Tn
-2 i

; l("ig. 2 — Range of integration over ¢ as a function of 7 in Coo(r), Coo(r), and
(An ‘J').
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7. COVARIABILITY OF ESTIMATES — APPROXIMATE FORMS

In assessing the covariability of estimates of the smoothed power spec-
trum, the relative magnitudes of three distances along the frequency
axis are important:

(a) the distance 1/T", , the reciprocal of the effective length of record,

(b) the least distance over which P(f) changes by an important amount
for f near f;, and

(¢) the least distance over which H(f; f1) changes by an important
amount for f near f; (this is of the order of 1/7',, and is usually much
larger than 1/77%).

If P(f) changes slowly enough to make (b) larger than (a), we may
use the approximation

v & g IPOF
whence, approximately,
cov (PR, PARY ~ g [ Pali) Pt -af
where "
Pa(f) = H(f; fOP(f)
Pu(f) = Hi(f; DP().

In the same terms we have

ave (PR} = [ " Palf)-df
and

ave (P79 = [ Path)-dr.

The relation of covariances to averages thus established may be rea-
sonably interpreted as meaning that any cancellations occurring in the
average values also occur in the covariances and variances. To the ac-
curacy of thisapproximation, then, we appear to be using the data rather
efficiently.

If, on the other hand, the true spectrum, P(f), consists of a singlé
sharp peak at f = f,, we may use the approximation, derived in Sec-
tion B.7, namely

wov (P10, 20) | [ Pt ar] [ [ Patr) ar]
~ ave {Pi(f)}-ave [P;(f)},
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a result which is not influenced by 7 (so long as T, does not become
large enough for 1/7", to become comparable with the width of the peak).

8. VARIABILITY — EQUIVALENT WIDTHS
If P(f) changes slowly in comparison with 1/ T , then, since
var {Pi(fi)} = cov {Pi(f1), Pdf)},
we may write down the dimensionless variability of P;(f1) itself as

var {P:(f1)} 1

[ave [Pi()IF T W.’

Ul Par) |
) [ atpr-as

is naturally called the equivalent width of Pu(f) = H(f; J1)-P(f).
The longer the record, and the wider the equivalent width, the more
stable the estimate. (Increasing the width also of course makes the esti-
mate refer to an average power density over a wider frequency interval.)
If, on the other hand, P(f) consists of a sharp peak, then, by the con-
cluding remarks of the preceding section

var {Pi(fl)} =1
lave {Pi(fOl]?

The equivalent widths of some simple cases are as follows:

1. If Pu(f) is a rectangle of width W which does not cross f = 0,
then W, = W.

2. If Pu(f) is a triangle of base W which does not cross f = 0, vertex
anywhere over the base, then W, = 0.75 V.

3. If Pa(f) is proportional to

where

w.

sin & T o sin 2!
w
+
w + w w — w
/4 w

i.e. has the shape of Hy(f; f1), where W = Wiain = 2W 4. (these being
the widths of main and side lobes, respectively), and if fy = 1/7T,, then
W.=05W =05 Wanain = Waide -

4. If Pa(f) has the shape of H.(f; f1), i.e. is proportional to a hanning
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(0.25, 0.5, 0.25) window, and if f; = 1/T, , then W, = 0.67 Wiain = 2.67
Waide .

5. If Pu(f) has the shape of Hi(f; fi), i.e. is proportional to a hamming
(0.23, 0.54, 0.23) window, and if fy = 1/T,,, then W, = 0.63 Wuuin =
2.52 Waide -

These cases are illustrated in Fig. 3, a single sketch sufficing for the
last two. Note that W, is close to £2W,,ia for practical windows, if
iz 1/Ta.

For our standard window pairs, hanning or hamming, the width of
the normal side lobes is 1/(27,) and, consequently, W, ~ 1.30/7..,
if i = 1/T,.

These last three equivalent widths decrease somewhat as f; becomes
small, and the values given should be halved for f; = 0.

If P(f) varies linearly across H (f; f1), then a calculation discussed
in Section B.8 shows that W, will tend to fall in the range from 1.15/7T,,
to 1.23/7,, . (A rather peaked case gives 0.94/T,,.) When we allow for
the fact that we are likely to be concerned with processes which are not
quite Gaussian, whose variances of estimate are consequently likely
to be somewhat larger than for the Gaussian case, a change correspond-
ing to the use of a decreased equivalent width in the formula, the choice

1

W, ~—

T,

which introduces a small factor of safety (not more than 1.3) seems de-

[ === W ——— i} '4——— We———-)l

— N\ aN :
\VAMAV/ e

Fig. 3 — Equivalent widths of some spectral windows.
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sirable for planning purposes. Consequently, we shall plan according to

var {Pi(f)} _ Tw
ave (PP~ T4

If we plan to hold the RMS deviation of each of our estimates below
one-third of its average value, we must, accordingly, keep 7./ T below
+. Thus, as noted above, we shall ordinarily keep T, to a small fraction
of T, .

In making more detailed studies of the variability of spectral esti-
mates, further approximation will be convenient. It is important to
note several reasons why we need not be too precise in making such ap-
proximations. First, as noted earlier, the variability results depend on
the noise being exactly Gaussian. Real noises (and especially real signals)
need not be exactly Gaussian. Thus, even exact results in Gaussian
theory would be approximations in practice. Second, the chief purposes
of studying variability are first to choose, once for all, effective methods
of analysis, and then, in each situation, to determine about how much
data will be required for the desired or given accuracy. Again, approxi-
mate results will be adequate. Third, it would not be safe to use the ad-
vance estimates of variability as firm, guaranteed, measures of the sta-
bility of the actual computed results in a practical situation, since other
sources of variability may well contribute to the deviation of a particu-
lar spectral density estimate from its long run value. (Non-constancy
of total power level, even with distribution-over-frequency remaining
constant, and failures of stationarity are two simple examples.) We
must rely on observed changes from trial to trial as basically the safest
measure of the lack of stability of our spectral density estimates.

Thus, the purposes of variability theory are well served if its results
are approximate — deviations of actual wvariability from theoretical
variability of +5 per cent, 410 per cent or even =20 per cent will be
quite satisfactory. Judged by this standard, the variability theory based
on (i) the Gaussian assumption and (ii) treating the distribution of the
spectral density estimates as if they followed so-called ‘“‘chi-square”
distributions, as we shall do in the next section, will usually be very
satisfactory.

9. CHI-SQUARE — EQUIVALENT DEGREES OF FREEDOM

If 41, y2, -+, yr are independently distributed according to a stand-
ard normal distribution, that is, according to a Gaussian distribution
with average zero and unit variance (and, consequently, unit standard
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deviation), then
x& =y oyl 4o 4w

which is obviously positive, follows, by definition, a chi-square distri-
bution with & degrees of freedom. The coefficient of variation of X'
the ratio of RMS deviation to average value, is (2/k)"*, so that, as k
increases, xi- becomes relatively less variable. This statement also ap-
plies to any multiple of Xi -

A convenient description of the stability of any positive or nearly-
positive estimate is its equivalent number of degrees of freedom, the num-
ber of degrees of freedom of that xi some multiple of which it resembles
(in average and variance unless otherwise specified). We can find such a
k from

b= 2(average)® _ 2
variance (coefficient of variation)?’

Interpretation is aided by Tables I and II. These tables are possible
because the distribution of the ratio of any multiple of xi* to the aver-
age value (of that multiple) depends only on k. Thus, if £ = 4, individual

TasLe 1
Distribution of quantities which are distributed as fixed multiple of chi-
square. Ratios of individual value to its average value exceeded with
given probabilities.

7
Degrees of freedom Excee;ileidwtl) uzso% of Exceefﬁdv:ﬁlg;] % of Exceeﬂidv: uéso/;] of
1 0.016 0.46 2.71
2 0.10 0.70 2.30
3 0.19 0.79 2.08
4 0.26 0.84 1.94
5 0.32 0.87 1.85
10 0.49 0.93 1.60
20 0.62 0.96 1.42
30 0.69 0.98 1.34
40 0.73 0.98 1.30
50 0.75 0.99 1.26
100 0.82 0.99 1.18
200 0.873 1.00 1.139
500 0.920 1.00 1.081
1000 0.943 1.00 1.057

Examples: (1) If the long run average is 10 volts?/cps, then among estimates
with 10 degrees of freedom, 10 per cent would fall below 4.9
volts?/eps, and 50 per cent would fall above 9.3 volts?/eps.

(2) If a single observed estimate, with 5 degrees of freedom, is
observed to be 2 volts?/eps, then we have 80 per cent confidence
that the true long-run value lies between 2/1.85 = 1.08
volts?/eps and 2/0.32 = 6.25 volts?/cps.
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TaBLE II — BEHAVIOR OF X;2 oN DECIBEL SCALE

i k required for intervalf of spread
Jiraction of Spread* of intervalf in dbt
10 db 5 db 2 db 1db -
40% 6/vVk —1 1 3 11 42
60% 10/vVE =1 2 5 28 105
80% 16*/vVE — 1 4 11 63 250
90% 20/ k — 1 5 18 104 410
96 25/l — 1 8 27 161 640
989, 20/vVk — 1 10 34 207 820

* Accurate to nearest integer in numerator for £ = 4, exeept for 80 per cent,
where 16 should be replaced by 15 for & < 11. Based on Tu&(ev and Winsor.13
(Spread is the difference between the upper boundary expressed in db, and the
lower boundary expressed in db.)

1 All intervals are symmetrie in the probability sense, half of the non-included
probability falling above and half below the interval.

i Since we are dealing with measures of variance, analogous to power, 10db =
(factor of 10), and (number of db) = (10 log,, ratio of variances).

values of any particular multiple of x.* will, in the long run, fall below
0.26 times their average value in 10 per cent of all cases (will be 5.8 db
or more below average in 10 per cent of all cases). Similarly, individual
values will, in the long run, fall below 0.84 times their average value (be
0.7 db or more below average) in 50 per cent of all cases, and in 90 per
cent of all cases will fall below 1.94 times their average value (be 2.9 db
or less above average). Thus, in the long run, 80 per cent of all values
will fall in an interval of spread (2.9) — (—5.8) = 8.7 db.

Thus, for example, to obtain 4 chances in 5 that a single observed
value will lie within 30 per cent of the true value we require (see Table
I) about 40 degrees of freedom, while to obtain 4 chances in 5 that a
single observed value will lie in a prescribable interval of length 5 db,
we recuire (see Table IT) at least 11 degrees of freedom.

The results of the preceding section indicate that, for an estimate of
smoothed spectral density, when P(f) is smooth, the number of degrees
of freedom is given by

ot e We
k=2T,W, = A
where the latter form expresses the number of degrees of freedom as the
number of elementary frequency bands, each of width

1

A,f=:‘z?’n!

contained in the equivalent width W, .
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For design purposes, the relation of the last section (including the
small safety factor) indicates that

= 2 ~ 277,
(var {Pi(f0}]/lave (PO} Twm

when P(f) varies slowly. (This will usually be the case if () & > 3 or 4,
say, and (i) Pu(f) is a moderately smooth single hump. For, under these
circumstances, Pa(f) will not change rapidly in a frequency interval
1/T and the same property can then be inferred for P(f) itself.)

When, on the other hand, P(f) consists of a single sharp peak, we
find, using the last result of Section 7, that & ~ 2, so long as 1/Th
is not small enough to be comparable with the width of the peak. At
first glance, this result may appear a little surprising, but when we
notice that a single spectral line corresponds either (a) to frequency
+fo and to frequency —f, , or (b) to cos wit and to sin wt , or (¢) to ampli-
tude and to phase, it appears quite natural that a sharp line carries two
degrees of freedom and not merely one.

We may summarize the semi-quantitative study of the stability of
estimates of the smoothed power spectrum as follows:

() It is not necessary to judge stability with very high accuracy.

(b) Tt is convenient to measure stability by analogy with the number
of degrees of freedom associated with a multiple of a chi-square variate.

(¢) The equivalent number of degrees of freedom can be regarded as
the number of elementary bands of width Af in the equivalent width W,
of the filtered spectrum

2Pﬂ(f) = H,-(f;fl)-QP(f) (f=z 0)

if the result is not too small (say > 3 or 4) and Pu(f) is moderately
smooth.

(d) If the filtered spectrum approaches a single sharp peak, the
equivalent number of degrees of freedom for the corresponding estimate
approaches two.

In interpreting the concept of equivalent number of degrees of freedom,
it may be helpful to imagine the continuous density of the fillered spec-
trum replaced by a discrete set of ordinates, one per elementary fre-
quency band. If these ordinates are po, p1, P2, "+, the natural approxi-
mation to the number of degrees of freedom is

k= (P0+P1+P2+ )2
p? + pt +opt o
as illustrated in Fig. 4. This approximation will usually be satisfactory
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Fig. 4 — Equivalent degrees of freedom.

as long as the effect on &k of moving each ordinate around within its
elementary frequency band can be neglected. (In more extreme cases,
an approximation based on two ordinates per pair of elementary fre-
quency hands is more precise.)

10. DIRECT ANALOG COMPUTATION — GRADED DATA WINDOWS

We have been dealing thus far with continuous time, and the com-
munications engineer will naturally ask, “Why introduce autocovariance
functions and all that, why not measure the spectrum by filtering, recti-
fying, and smoothing?”. The only fair answer is “By all means, do so if
you can obtain, and maintain, the necessary accuracy economically!”
Let us apply our results to such a measurement technique.

Let X(¢) be the noise or signal whose power spectrum P(f) we wish
to study. Let us pass it through a filter of transfer function Y (f), and
designate the result by Xou.(f). Its power spectrum, Pou(f), will be given

by
Pou(f) = | Y(f) - P(f)

and if a section of Xou(t) of length T, is applied to an ideal quadratic
rectifier and smoothed by a smoothing circut of infinite time constant,
the result will be

fa " (Xou (D) at.
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The average value of this result divided by T, is

[ 2Pt as,

and the number of equivalent degrees of freedom is the number of
elementary frequency bands, of bandwidth 1/(27T.,), contained by the
equivalent width of | Y'(f) [*-P(f). This last function is of the form

(power transmission function)(original power spectrum)

just as before. We see that the ideal process of filtering, rectifying, and
smoothing the actual input has produced the same accuracy as the ideal
process of calculating, modifying, and transforming the apparent auto-
covariance, provided that | Y(f) [* = H(f; fi) for a suitable choice of
T.., f, and fi . This is what we ought to have expected, since we believe
that either method extracts nearly all the information about the spectrum
which the data provides.

A few practical considerations deserve mention. They center around
the actual switching sitations which can arise, especially when we have
only a finite sample of the original noise. In Fig. 5, the watt-second meter
includes quadratic rectification and integration functions which we think
of as ideal. (It may be very important to allow for the fact that the
“ground” position of switch A is not quite at the same potential as the
zero of the input noise, but we shall neglect this effect for the moment.)

Some four sorts of operation can arise according to the times at which
switch B is operated. The watt-second meter may be connected either at
the beginning of the running period T or after some interval of time
(to allow initial transients to become negligible), and may be discon-
nected either at the end of the running period 7' or after some interval of
time (to allow the meter to reach a maximum). These four modes of
operation are illustrated in Iig. 6.

In Mode I, providing the initial waiting period is long enough to allow
transients to become negligible, the filter output is essentially stationary,
and the earlier discussion in this section applies.

STATIONARY
WATT —SEC
RANDOM
PROCESS 1 { METER
DUMMY
LOAD

Fig. 5 — Schematic analog circuit.
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PRE-RUN RUN POST-RUN

SWITCH A DOWN SWITCH A UP SWITCH A DOWN

ALL MODES |==——em—— i —m@—m——————————————————————————— P — ———————————————
‘ FILTER CLEAN LENGTH OF RECORD=T
METER ZERCED

SWITCH B DOWN WHILE
FILTER TRANSIENTS DIE OUT

MODE 1 «tole B up B DOWN ———————
" READ WATTTSECS
T DIVIDE BY T
«—————B UP———————»T0 MAX. READING
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MODE II i« BUP——— g B DOWN = e e e =

READ AND DIVIDE BY T

B_DOWN (AS IN MODE I)
MODE ¥ B up —»TO MAX, REAPING
T'————{ DIVIDE BY T

Fig. 6 — Time histories of operation for different modes.

In Mode TII, all of the energy output is recorded on the meter, but the
reading is divided only by the length of the input data. This mode is
amenable to exact and complete analysis which is given in some detail
in Section B.10. The results differ from those of Mode I in that the
transform of the boxear function of length T (running period) is con-
volved twice into the spectral window. (Convolution is defined and dis-
cussed in Appendix A.3.) If 7' is not large, the effects may be somewhat
uncomfortable in that the spectral window becomes wider and more
ragged.

Mode III, discussed briefly in Section B.10, differs from Mode II
by an additional convolution whose effect again disappears as 7 — .

Mode IV resembles Mode I in that the noise input is passed through
the filter until transient effects have become negligible, when the meter
is switched on at the filter output. It differs from Mode I in that the
meter is read after a final waiting period. This seems to offer no advan-
tages over Mode I, and will not be discussed further.

The contrast between Mode I and Mode IT is another example of what
should now be becoming familiar. Mode I has no additional convolution
in the spectral window. Mode II provides data economy by making it
possible to integrate over the whole length of the available record. We
should really like both advantages.

We can, indeed, obtain most of both advantages, but only by replac-
ing the sharp edges of the switched data window by the smoothed outlines
of a graded data window. In other words, we need to introduce
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Xi(t) = B(t)-X(1)

at the input of the filter, where B(¢) vanishes except for 0 < ¢ < 7', and
is smooth enough to have its Fourier transform J(f) concentrated near
f = 0. Details are discussed in Section B.10.

Difficulties arising from the fact that the zero of the X(f) input might
not be at ground are shown in Section B.10 to behave similarly to
those arising from switching transients, namely, no effect in Mode I,
possibly uncomfortable in Modes II and III, usually negligible when a
well-chosen graded data window is used.

Another device is sometimes used to make maximum use of a finite
noise record. The record is merely closed into a continuous loop, and the
rectifier-smoother output averaged. It is shown in Section B.10 that
here, too, we must use a graded data window B(f).

11. DISTORTION, NOISE, HETERODYNE FILTERING AND PREWHITENING

Another group of very important practical considerations center
around the spectrum of the “signal” as it is handled (either instan-
taneously, or in recorded form). We have spoken of “filtering, rectify-
ing and smoothing” and have treated all these steps as ideal. No atten-
tion has been given to the equally vital “gathering” and “transmission
and recording” steps. Tacitly, they too have been treated as ideal.
Realistically, we must expect a certain amount of distortion (non-
linearity, intermodulation, ete.) and the addition of a certain amount of
hackground noise in all three of the first steps: gathering, transmission
and recording, filtration. It often proves to be most important to lessen
the ill effects of such distortion and noise addition.

In a perfect system, and with a fixed spectral window, the fluctuations
of an estimate are proportional to its average value. If we have a fixed
uniform noise level, it will do the least additional damage if all the
average values of the estimates are of about the same size, for then no
low estimate can “disappear’” into the noise.

Intermodulation distortion will have the greatest effect on the signal
being transmitted when two strong frequencies combine to produce a
modulation product whose frequency falls in a very weak region of the
spectrum, for it is in such situations that the fractional distortion of the
spectrum reaches its maximum. To minimize possible effects of intermod-
ulation distortion it is again desirable to transmit, record and generally
handle signals with a roughly flat spectrum.

To these noise and intermodulation considerations another sort of
consideration may be added. Many frequency analyzers use a hetero-
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dyne system, bringing the frequency band to be studied to a fixed filter,
rather than tuning a filter across a wide frequency band. The power trans-
fer function of the combination of heterodyne modulator and fixed
filter, referred to input frequency, will depend only on Af, the deviation
of | f| from | fy |, where f, is the nominal frequency of the fixed filter, and
will be denoted by Q.(Af). If demands at different frequencies differ,
the shape of @,(Af) may have to be a compromise. One sort of demand
arises when P(f) varies very rapidly. The net contribution near frequency
Ji to the average value of the spectral density estimate is measured by
H(f; fi)-P(f), where, as elsewhere, H.(f; fi) = Q:(f + fi) + Q:(f — fo).
If our estimate is to be useful, only f’s near f, should have a substantial
net contribution. If P(f) rises steeply as f leaves f;, we may have to
requirea very rapid fall-off in H(f; f1), here practically equal to Q.(f — f1),
in order to attain this as f leaves fi. We may thus be forced to compro-
mise properties of Qi(Af) useful near other frequencies. The simplest
way to avoid such problems is to arrange for the P(f) of the “signal”
analyzed to be fairly constant, or at most slowly varying.

Thus, for a variety of reasons, we can often gain by introducing “com-
pensation” or “preemphasis” to make more nearly constant the spec-
trum of the “signal” actually transmitted or recorded, and analyzed.
Sinece the ideal would be to bring the spectrum close to that of white
noise, it is natural to refer to this process as prewhitening. Such flattening
of the spectrum need not be precise, or even closely approximate. We
need only to make the rate of change of P(f) with frequency relatively
small.

Because of advantages related to the noise and intermodulation dis-
tortion introduced in various steps of the sequence, it will be best, other
considerations aside, to carry out such prewhitening at as early a point
in the measurement-analysis sequence as possible. Sometimes this can
even be done in the pick-up or sensing element.

This whole philosophy of prewhitening, which appears quite natural
to the communication engineer familiar with preemphasis and other
techniques for increased information transfer within a given frequency
interval, comes as a great change to the instrumentation engineer, whose
clients ordinarily require “faithful” reproduction of an input at the out-
put, by which they mean phase shifts nearly linear with frequency, and
a nearly constant amplitude response up to some high frequency. It will
be rare indeed, in practical spectrum analysis, that the ideal response
for the initial transducer and amplifier will be flat. Instead it should
have a characteristic contributing to prewhitening. This characteristic
will, of course, have to be measured separately and the corresponding
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adjustments to the estimates of the spectral density will have to be made
so that these estimates, instead of applying to the “signal” actually
analyzed, apply to the original “input signal”, but such labor will often
be many times repaid.

One further consideration about frequency responses in measurement
now enters naturally. In almost every power spectrum problem there is
an upper frequency beyond which there is no appreciable interest. In
most components used in measurement, transmission, recording, etc.,
the noise level, and often the level of intermodulation distortion, is
roughly a fixed fraction of the peak useful level. If substantial power is
present at frequencies so high as to be uninteresting, then the need to
keep total power below the peak useful level forces us to handle the
interesting frequencies at a power level below that which could other-
wise be used. The ratio of noise and intermodulation distortion to inter-
esting signal is thus raised — the quality of the analysis and its results
degraded. The appropriate remedy is to filter out the uninteresting high
frequencies at as early a stage as possible. This is a further reason why a
carefully tailored frequency response is an important part of a power
spectrum measuring process.

Together with the need for adequately wide filters (we can of course
use narrower filters when we are prepared to average over homogeneous
records of sufficiently long total duration) to provide enough equivalent
degrees of freedom, and hence enough stability for the estimates, this
tailoring of frequency response is often the crucial part of a power spec-
trum measuring program. Indeed, there may sometimes be no reason-
able way to measure power spectra with an ill-tailored frequency re-
sponse, even if this response be “flat”.

EquaLLy SracEp REcorDs

We come now to treat a modified situation of great practical impor-
tance, where the observations are used for analysis only at equally spaced
intervals of time — not as a continuous time record. Two new and im-
portant features enter: there is aliasing of frequencies, and practical
analysis will involve digital rather than analog computation. In general,
however, the situation is surprisingly similar to the case of a continuous
record, with limitations on data-gathering effort still forcing us to com-
promise resolution and stability. Advantages of convenient calculation
and noise reduction still lead us to prewhitening. Filtering of equi-spaced
data must involve transversal filters (see Glossary of Terms for defini-
tion) whose transmission properties (in frequency) exhibit a periodie
symmetry. This exerts additional pressure toward prewhitening,
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Questions regarding computational techniques arise anew because
of the nature of digital computation. These include means for reducing
the effects of a displaced (perhaps drifting) zero, smoothing by groups
to economize arithmetical operations on the whole, and preliminary
rough estimation as an aid to planning,.

12. ALIASING

We now suppose that X (¢) is available, or is to be used, only for uni-
formly spaced values of ¢, which we may as well suppose to be

t =0, Al, 2AL, 3AL - -, nAl,
so that C(7) can only be estimated for
| 7| = 0, At, 2A¢, - - -, nAl.

Now, the equations
CG) = [ 2P.(f) cos 2nfr-db,
0

|T|:th! q=0,1,"','ﬂ.,

if soluble at all, can always be satisfied by a P.(f) which vanishes for
f > fx = 1/(2Af), although the power spectrum P(f) of the original
process (for which the C(r) was defined) might actually cover a much
wider frequency range. (We shall reserve the notation P.(f) for such a
function, vanishing for |f| > fy.) While frequencies between f = 0
and f = fu are clearly distinct from one another, we face a problem of
aliasing, since frequencies above fy usually contribute some power. Each
frequency, no matter how high, is indistinguishable from one in the
band from 0 to fy .

The essential, unavoidable nature of this problem is made clear by
Fig. 7 which illustrates how equally spaced time samples from any

f=4

Fig. 7 — Sampling of sinusoidal waves.
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cosine wave could have come from each of many other cosine waves.
(The familiar stroboscope uses a particular expression of this fact in
apparently “slowing down” rapidly rotating or oscillating machinery.)

The logical position about P.(f) depends very much on whether X(¢)
is thought of as having any real existence for | {| = gAt.

It X(¢) really exists for continuous ¢, although we have (¢) failed to
observe or record it, or (i2) failed to ‘“‘read” the record, or (¢#7) decided
to neglect the available values, then there is a well-defined P(f) cor-
responding to the process from which each X(f) is a sample, and we must
be very careful about the relation between P(f), which is our true con-
cern, and P,(f), which is clearly all we can strive to estimate directly
from the data. It can be shown (see Section B.12) that, in the form
appropriate for a one-sided spectrum, if we set

2P.(f) = 2P(f) + 2P2fv — ) + 2P2fx + )
+2PUEfy — ) +2P@ N+ + -+
then we may take
P.(f), 0=|fl=/fw,
otherwise

where fy = 1/(24t) is the folding (or Nyquist) frequency. We naturally
call the frequencies f, 2fx — [, 2fx + [, 4fxv — f, 4fx + [, and so on,
aliases of one another, f being the principal alias. The aliased spec-
trum P,(f) is the result of aliasing P(f). The principal parl of the
aliased spectrum P,(f) is the part of P.(f) which corresponds to
principal aliases, positive and negative.

(If X (¢) has no natural existence for #s which are not integral multiples
of At, then P(f) is not uniquely defined, and we are at liberty to choose
any normalization we desire. In particular, we may decide to limit P(f)
to the interval | f| = 1/(2Af), in which case we will be enforcing P(f) =
P.(f) without any trace of aliasing. We mention this case for logical
completeness, but remark that it seems to occur infrequently in practice,
whatever the field.)

If the Gaussian noise we are considering has a power spectrum P(f)
which extends outside | f| < 1/(2At), then the Gaussian noise with
spectrum P4 (f) is not the same for continuous time. However, if we con-
sider these two noises only for equi-spaced times

t =0, At, 208, - -

they are identical. For all first moments vanish and all second moments
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coineide, which implies coincidence of the joint distributions of any
finite set from - -+, X_o, -+, X4, Xo, Xy, -+, X, -+, and this is our
definition of the coincidence of two noises. (If a result concerning such
equally spaced values can be established for a Gaussian noise restricted
to have P(f) vanish outside | f| = 1/(24¢), it must trivially hold, under
the same restriction, when all oceurrences of P(f) are changed to P.(f).
It is a consequence of the identification just established that the result,
when expressed in terms of P (f), must also hold for any Gaussian noise
whatever.)

The frequency interval from 0 to fy contains a certain number of
elementary frequency bands in the sense of our treatment of variability.
The total length of record is T, = nAt, and if we write 1%, = n'At for
the effective length, then, since

1
fN = Zﬁ = n’
elementary frequency bandwidth 1
217,

there are n' elementary frequency bands between 0 and fy . As a statisti-
cian would have anticipated, we gain one elementary frequency band —
one degree of freedom — for each added observation.

It is perhaps natural to base a hope on this result —a hope that
taking data more frequently over the same time interval would gain us
many degrees of freedom and reduce our difficulties with variability.
However, this is not the case (as the expression for the width of an ele-
mentary frequency band 1/(27,) should have warned us). Taking ob-
servations twice as frequently yields twice as many elementary fre-
quency bands, but also doubles the folding frequency fy and, thus,
doubles the frequency interval occupied by principal aliases. The density
of elementary frequency bands is not increased one iota. (Clearly, iota
was the Greek word for bit!).

Tt is usual for aliasing to be present and to be of actual or potential
importance. This is an inescapable consequence of data taken or read
at uniform intervals. (It is not infrequently suggested that there should
be a workable scheme of taking discrete data in some definite, but not
uniformly spaced pattern, and estimating the power spectrum without
aliasing. No such scheme seems so far to have heen developed).

13. TRANSFORMATION AND WINDOWS.

Given uniformly spaced values of X({) — values which we shall now
designate X, X1, ---, X, as well as X(0), X(a?), ---, X(nAt) — we
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expect to caleulate “sample autocovariances”, modify them, and then
Fourier transform the results. There is no possibility of calculating auto-
covariances for lags other than 0, Af, ---, nAf, and so we may as well
write €y, Cy, -, O, in place of Ci(0), Ci[(Al), ---, Ci(mAl). It we
Fourier transform these m -+ 1 numbers, as obtained or modified, we
might obtain a smoothed spectral estimate for any frequency between
0 and fy = 1/(2Af) that we may wish. It is not surprising, however, that
we lose no information (and little explication) if we calculate only m + 1
such estimates (one for each ;). Nor is it surprising that we regularly
take these estimates equally spaced over 0 = f = fy, and hence at
intervals of fv/m = 1/(2mAf). As a consequence we have to deal with
finite Fourier (cosine) series transformation (classical harmonic analysis)
rather than with ¢nfinite Fourier infegral transformation, but the cor-
respondence between multiplication and convolution persists.

The question of modification also requires discussion. In the continu-
ous case we Fourier transformed

Ci(r) = Di(7)-Cul(r) = Di(r)-Co(r)

where Cy(7) coincided with Co(r) wherever the latter was defined, and
is zero otherwise (cp. Section B.5). The result was, consequently (e.g.
see Appendix A.3), the convolution of the Fourier transforms of Dy(r)
and Co(7). So long as time was continuous and computation was pre-
sumably by analog devices, there was a real advantage to modification
before transformation. Now that time is discrete and computation pre-
sumably digital, the advantage is transferred to first transforming and
then convolving. Indeed, because the D.(r), for ¢ > 1, are finite sums of
cosines, so that their transforms are simply sums of spikes (Dirac delta-
functions) at the appropriate spacing, convolution means only smooth-
ing with weights

0.25, 0.5, 0.25 (z =2, hanning)
0.23, 0.54, 0.23 (7 = 3, hamming)

and is very simply carried out.

In discussing this program, we gain some generality by using m + 1
lags separated by Ar = hAt for an integer 2 > 0, while our results are
no more complicated than if we were to confine ourselves to b = 1,
which is the practical case. Thus, we first compute the mean lagged
products

1 qg=n—rh

C:" = Z Xu'XﬁJrrh

n — rh o=




MEASUREMENT OF POWER SPECTRA 221

forr = 0,1, 2, -+, m, where mh < n. Note that C, is heuristically as
close as we can come to the apparent autocovariance Co(2rAr) with the
available (equi-spaced) data. Note further that, o far as functions of
the C, are concerned, our effective folding frequency is

1 1

We will usually need to adjust the €, somewhat to improve very-low-
frequency performance, as discussed in Section 19, but this need not
concern us for the moment.

Applying a discrele finite cosine series transform to the sequence €,
Ci, -+, Cn, we find

m—1
V.= [Ca + 2 Z Cy cos I 4 C, - cOS rw]

(We may regard this as arising from replacing Co(7) in the expression for
Po(f) as its Fourier integral transform by a finite sequence of spikes
(Dirac delta functions) of intensities (areas) proportional to the corre-
sponding values of Cy(r).) If we put

7
Poa (Zm-Af) =V

then it is shown in Section B.13 that

ave (PN} = [ Qs — f'80) P()-df
where
wAT .
Qu(f; Ar) = Ar-cot —5—-sin mwAr.
In terms of Qy(f), which is treated in Section B.5, we have

Qu(f; Ar) = Z Qo (f - *) = Qua(f).

g=—00

Just as the average value of Py(f) in the continuous case is the cor-
responding value of Qu(f) * P(f), so here the average value of Py,(f) is the
corresponding value of Qu(f; At) * P(f). Thus, we may consider Pos(f) as
estimating the result of “smoothing’”” P(f) with a window Qo(f; A7) which
has repeated major (and concomitant minor) lobes at intervals of
2fy* = (Ar)”'. This is not the most convenient way to consider matters,
and in Section B.13 it is shown that there are two equivalent forms for
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ave {Py.(f)) and, correspondingly, two other, equally appropriate, ways
to consider the situation.
These arise from the three-fold identity

Qua(f) = P(f) = Qu(f) x Pu(f) = Qualf) * Pa(f),

any member of which represents the average value of Po.(f). Thus, we
can also consider Pys(f): (i) as estimating the result of smoothing the
infinite, periodic aliased spectrum P,(f) with the same window as for
the continuous case, or (ii) as estimating the result of smoothing the
principal part of the aliased spectrum P.(f) with the aliased window
€o4(f). The latter choice is usually the most helpful of the three possi-
bilities, and is the one we shall adopt.

All this has been discussed for the immediate results of transforming
unmodified C,’s. This is only the case ¢ = 0 of the identity

Quu() *P(f) = Quf) * Pulf) = Qua(f) * Pa(f)

which holds in general. We should thus usually be concerned with Q:.(f)

and with P,(f).
The case ¢ = 2 (hanning) corresponds to the following smoothing after

transformation:
Uy =05V, + 05V,
U =025V, 4+ 05V, 4+ 025V, 1=r=m—1,
Un=05Vuy+05V,,

for which @..(f) has the form shown in Fig. 8. The curve is for m = 12,
and the circles are for m = o, which corresponds exactly to the con-
tinuous case. Clearly, for usual values of m, the modification in the lobes
due to aliasing is almost surely unimportant.

The frequency separation between adjacent estimates is

11
2T, 2mAr’

but the equivalent width of the windows (for 1 = r = m — 1) is about

130 _ 130
T.  mAr’

just as for the continuous case (see Section 8). For most purposes we
may again take the bandwidth corresponding to each estimate as 1/7 ,
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Fig. 8 — Aliased spectral window @y for m = 12.

so that m satisfies
7171 = (bandwidth of estimates)-(A7).

If we had neither modified before Fourier transformation, nor
smoothed after transformation, we should have faced the uncomfortable
minor lobes of Qo(f) shown in Fig. 9 for m = 12 (with circles form = «).
Generally speaking, all we learned about desirable lag windows for the
continuous case carries over with minor modifications, at most. The
only serious effect of going to uniformly spaced values is the aliasing
(and this may be very serious indeed).

It is well worth noting that the possible spectral windows Q.4(f) are
now restricted to be finite Fourier series in cos wAr, cos 2wAr, -+,
cos mwAr, or equivalently, to be polynomials in cos wAr of degree m at
most.

14. VARIABILITY AND COVARIABILITY

We now extend all our other notation: H,(f; fi), P«f1), ete. to cor-
responding Hi(f; fi), Pia(f1), ete. for the uniformly spaced case as
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specified in Sections B.13 and B.14. It is shown in the latter section that
we now have

cov {2P:,(f1), 2Pis(f2)} = j: Hia(f; 1) -Hia(f; f2)-2Tau(f) - df
where

ruts) w4 [ R n o = () () o

(w' = 2xf"), with a very slightly different determination of T, than be-
fore. The only essential change has been the introduction of a new
factor, corresponding to aliasing,

sin w’At)ﬁz
w'Al |
into the integrand of the power-variance spectrum I's,(f). For usable
values of 7, this factor will vary much more slowly than

(Sill o' To\?
w’ Tr:l
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and can usually be treated as sensibly equal to unity. All the approxi-
mate analysis of covariability and variability given for the continuous
case now goes through without essential change.

15. PREWHITENING

If the equally spaced data is sampled from a continuously transmitted
“signal” or “read” from a continuous recording, then all the points
made in Section 11 in favor of early prewhitening are still applicable.
If the equally spaced data arises more directly, as by photographing a
physical situation, we may not be able to apply prewhitening early. In
either case it may still be desirable to prewhiten after the data is obtained
at equal intervals, either as a supplement to, or as a partial replacement
for, early prewhitening.

The average value of a power density estimate P,4(f) is

ave {Pi(f)] = f: Pin( f)-df,

where
Pialf) = Hoalf5 [ Pa(f).

We want this quantity to tell us about the values of £(f) for f near fi .
To do this we must: (i) reduce variability, (i) ensure that P.(f) re-
sembles P(f) sufficiently, and (iii) concentrate P;(f) near f = fi. We
must be concerned with: (i) adequately broad windows, (ii) sufficiently
weak alinasing, and (iil) enough sharpness in the effective filter. This
sharpness can be obtained in a combination of ways.

Note that we asked for P;,(f), which measures the net contribution
to the average value, to be localized. We did not merely ask that H.(f; f1)
should be localized. For, if

P.i(f2) >>> Pa(fy),
although
Hii(f5 1) << His(fr5 0),
it is still possible for
Pia(f) = Hialfa 5 J1) - Pu(f2)
to outweigh
P,;.n(f]) = Hi.-l(fl ;.fl)'PA(.fl):

so that our estimate tells us more about P(f) near f/ = f than it does
about P(f) near f = ;. To avoid such unfortunate situations either we



226 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958

must choose our window pair in a very particular manner (so as to make
H:a(f2; fi) exceptionally small) or we must avoid P,(fs) >>> Pa(fi).
Both courses are possible and sometimes necessary. Usually, the second
course is simpler.

Following the second course is simple in principle. Given actual values
X, , we apply a selected linear procedure to obtain new values X, and
analyze these. The aliased spectrum P.(f) of the X, differs from the
aliased spectrum P,(f) of the X, by a known multiplicative function of
frequency. (See Section B.15 for details.) Thus, (i) we may convert
estimates of P,(f) into estimates of P4(f), and (ii) we may choose the
linear procedure to make the aliased spectrum P.(f) of the X, reasonably
flat.

The simplest linear procedures are probably the formation of moving
linear combinations and the construction of autoregressive series. A
simple example of a moving linear combination is

X, =X, —aX,q — BXo2 — vXys
for which the relation between the spectra is
%% _ % |1 — qe bt — geiAt _ g iwat I
= a cubic in cos wAl.
A suitable moving linear combination will generate any desired non-

negative polynomial in cos wAL
A simple example of an autoregressive combination is

Xq = Xq + )qul + #X~q—'_’ + VX'qfli
for which the relation (reciprocal to that just considered) between the

spectra is

ve

P.(f) ()

= (a cubic in cos wAt) ™.

PA(f} P(.f) — {l 1 _ Re—-:’wﬁt _ 'ue—iﬂmAl _ —idwAt 122—1

A suitable autoregressive combination will, when indefinitely continued,
generate the reciprocal of any desired non-negative polynomial in

cos wAf.
By combining a suitable moving linear combination with suitable auto-

regression, as for instance in

X, =X,— aX,1 + X,
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which may also be written
X, - N, =X, —aX,,,
tor which

‘,651(,@ - Py _ ’ | — qe b
Palf) P(f) 1 — Ae—iwAl

1 + o — 2a cos wAt
1 4+ A2 — 2\ cos wAl

= a rational function of cos wAt,

we can modify P,(f) by multiplication by an arbitrary non-negative
rational function of cos wAt.

Freedom to multiply by any (simple) non-negative rational function
of cos wAlf is very substantial freedom. If we have a rough idea (see Sec-
tion 18) of the behavior of P4(f), and if this behaviour is moderately
smooth, though perhaps quite steep in places, we can usually do a very
good job of flattening the spectrum by prewhitening after obtaining dis-
crete (digital) values. Unless still bothered with steep slopes, we will
usually then find that hanning, with its (0.25, 0.50, 0.25) weights and
lower outer lobes is slightly preferable to hamming, with its (0.23, 0.54,
0.23) weights and reduced first minor lobes.

The main purpose of prewhitening afler data has been obtained in
digital form at equally spaced intervals is to avoid difficulty with the
minor lobes of our spectral windows. We may regard the whole process
of prewhitening, analysis with standard spectral windows, and, finally,
compensation of estimate, as a means of constructing a set of specially
shaped spectral windows, one for each center frequency, specially adapted
to the data we are processing. This point of view is illustrated in Fig. 10.
The uppermost curve shows the power transfer function of a hypothetical
prewhitening filter, one which enhances mid-frequencies in comparison
with those lower and higher. The next line shows two standard spectral
windows, with symmetrical side lobes. The third line shows the effective
spectral windows when prewhitening is followed by standard analysis,
as given by the product of prewhitening power transfer funetion and
spectral window. In either case, the side lobe toward mid-frequencies is
higher than the corresponding side lobe on the opposite side, which is
lower than for the standard. The lowest curve shows alternative spectra,
for time series which might reasonably be processed by the combination
of prewhitening and standard analysis shown (since the prewhitened
spectra would change only slowly). In every case, the side lobes of the
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special spectral windows are automatically so related to these spectra,
as to balance and reduce the amount of leakage through them, as given
by the product of special spectral window side lobe and original spectral
density.

(a)

(b) Y

(d)

Fig. 10 — Tllustration of prewhitening; (a) prewhitening power transfer fune-
tion, (b) standard speetral windows, (¢) effective spectral windows, and (d) typi-
cal input spectra to which (a) might be applied.

Easing of requirements for accuracy (number of significant figures,
ete.) during computation are ordinarily quite secondary, though pleas-
ant, advantages of prewhitening during digital calculation.

16. REJECTION FILTERING AND SEPARATION

If the difficulties in handling P(f) are due, wholly or in part, to one or
more quite narrow and very high peaks (“lines” or “narrow bands’)
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then we cannot expect either to afford, or to be able to estimate, the
great number of accurately chosen constants which would be required to
ohtain a rational function whose reciproeal has a shape very close to the
given narrow peak. We must adopt a slightly different approach, and
plan to make at least two analyses of the data — one to estimate the
behavior at the peak, and another to estimate the behavior away from
the peak.

In order to separate the bulk of the information in the data from the
variation associated with the sharp peak which may be troubling us, we
may apply to the data a moving linear combination (possibly combined
with autoregression) whose power transfer function (the factor by which
the spectrum is altered) has one or more zeroes near the peak. The
resulting sequence will be largely free of contribution from the peak and
hence will be suitable for further prewhitening (if required) and analysis.
(This operation can often, of course, be combined with further prewhiten-
ing so far as actual ealeulation goes. It will of course be necessary to
compensate for the effects of this transformation at frequencies away
from the peak, when preparing the final spectrum estimates for interpre-
tation.)

There remains the estimation of the power in the peak, and possibly
some inquiry into its width. A number of approaches are possible:

(1) We may analyze the original data as well as the data with the
peak rejected, obtaining an estimate at the peak and possibly confirma-
tory estimates far from the peak.

(2) We may subtract a suitable multiple of the modified data from the
original data so as to retain the peak and partially reduce other fre-
quencies; and then analyze the difference.

(3) We may apply a band-pass filter to isolate frequencies at and near
the peak, and then analyze the result.

Any of these techniques may be applicable in suitable circumstances.

Other related procedures are sometimes more natural than the use of
moving linear combinations. Rejection of zero frequency, for example,
is more naturally, and computationally more easily, accomplished by
subtraction of the mean of all the data from each X, than by the sub-
traction of a moving linear combination from each.

Rejection filtration has been applied in oceanography by Groves,"
Seiwell,” Seiwell and Wadsworth,'® to the elimination of various well-
defined tides from records. It almost always has to be used to eliminate
possible peaks at zero frequency (see Section 19 below).

In electronic measurements we may also anticipate its possible use in
measurements: (i) close to a substantial harmonic of 60 cycles per
second (such as 120 eps or 1380 cps), or (i) near some strong “carrier”.
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17. SMOOTHING BY GROUPS

The cost of digital power spectrum analysis, once initial investments
in programming, ete. have been made, and assuming records to have
already been made and “read”, is likely to be associated with the number
of multiplications involved in computing the mean lagged products (in
original or modified form). If there are n observations, and m lags are
used, then there will be roughly nm multiplications.

Ways of reducing this number substantially are naturally of interest.
Most of these must depend for their efficacy on our interest in something
less than the whole speetrum. We have already discussed (in passing) a
situation which would naturally arise only when we are interested only
in the lower part of the aliased spectrum. This is the use of lags which
are multiples of A7 = hAf with A > 1. The use of lags up to mAr = hmA¢
allows us to explore the spectrum down to frequencies almost of the
order 1/hmAt, which, had we used all multiples of Af up to Am, would
have required hm 4+ 1 values of C. (or of its modifications) instead of
m -+ 1. The price of doing this is the aliasing of the spectrum with fold-
ing frequency 1/(2A7) = (1/h) (1/(2At)), which is h times as much
aliasing as if all multiples of At up to km had been used, yielding a fold-
ing frequency of 1/(2At).

If such intensive aliasing is bearable, this procedure with Ar > At is
simple, even though it is not necessarily economical. Indeed, if so
much aliasing were permissible, we need only have “read” every hth
data value. In many situations, however, especially where Af has been
taken as large as aliasing will permit, such further aliasing is unbear-
able. If we are to look at the low frequency part of the aliased spectrum
P (f)with computational economy, another course will have to be found.

Our use of linear schemes in prewhitening shows us a possible course.
Let us begin by applying a linear scheme to the given values X, , which
attenuates all high frequencies. Then we can face further aliasing, and
proceed apace.

If simplicity is controlling, then we take

X, =X, + X0+ -+ Xun (k terms)
for which the relation between the spectra (the power transfer function
of the smoothing) is

P(f) _ —iwAl o —i(k—T)wAt |2
BT [1+ e + + e ‘ |
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This will give us zeroes at frequencies which are multiples of 1/kA¢, and
we can avoid folding the first two side lobes of this function onto the
main lobe and still take a folding frequency as small as 2/kAf. Such a
choice will fold the second, fifth, sixth, etc. side lobes onto the first side
lobe, and it will fold the third, fourth, seventh, eighth, etc. side lobes
onto the main lobe. We obtain such a folding frequeney by retaining
only one in every k/4 of the X,’s. These decimated* X,’s may, in par-
ticular, be obtained by summing the X,’s in non-overlapping blocks of
k/4, and then summing these block sums in all possible (overlapping)
sets of four successive blocks. (This requires (k& + 8)/k additions per
original value.) The estimated spectrum below 1/kAt has to be multi-
plied by

2

. wA
sin —

sin koAt ,
2

and only aliases which are usually negligible will have been superposed
on the prineipal aliases. About one kth of the original principal spectrum
will be available for analysis.

The stability obtained by this process can be easily compared with
that obtained by using all X, and taking A7 = kAt/4. In each case, the
width of the elementary frequency bands is approximately 1 /2T,
where 7", has slightly different, but not substantially different values.
The process just described yields nearly the same stability as Ar = kAt/4,
and usually involves much less computation, besides avoiding serious
aliasing. It will almost always be preferred to using Ar = hAf with A > 1.

Other schemes of smoothing by groups are discussed in Seetion B.17.

18. PILOT ESTIMATION

The prewhitening procedure demands a rough knowledge of the spec-
trum for its effective use. Sometimes this rough knowledge can be ob-
tained from theoretical considerations, or from past experience, but in
many cases it must be obtained from a preliminary (pilot) analysis of
the data. Such pilot analyses should be as simple and cheap as possible.
We now diseuss a pilot analysis giving very rough results quite easily.

Table TIT exemplifies a form of calculation which is easily carried out
either entirely by hand, or with a desk caleulator. The symbols “8”’ and
“s7 refer to differences and sums of consecutive numbers in non-over-
lapping pairs. Taking the numbers in non-overlapping pairs is not neces-

* Although this word should refer strictly to the deletion of only every 10th
item, we shall apply it to the retention of only every jth item, for whatever j may
be relevant.
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TasLE IIT — CompuraTiON OF PIiLorT ESTIMATES
q X, | 86X, | (68Xt oX, | seXg [(b0Xq)?| 02Xy | 02X, |(802Xg)?
1 3
2 4 1 1 7
3 -1
4 -2 -1 1 -3 —10 100 4
5 2
§ 7 5 25 9
7 5
8 -1 —6 36 4 -5 25 13 9 81
9 —3
10 2 5 25 -1
11 5
12 4 -1 1 9 10 100 8
13 7
14 3 —4 16 10
15 4
16 -1 —5 25 3 -7 49 13 5 25
17 —4
18 2 6 36 -2
19 4
20 0 —4 16 4 6 36 2
21 1
22 —1 -2 4 0
23 1
24 2 1 1 3 3 9 3 1 1
25 4
26 3 —1 1 7
27 0
28 —4 —4 16 —4 —11 121 3
29 -1
30 -2 -1 1 —3
31 -2
32+ —2 0 0| —4 -1 1| =7 | =10 | 100
Totals 205 441 ‘ 207
ContinvuaTioN oF TABLE III Tto THE RigaT (COMPRESSED)
g X, 807X 4 (BN | HXg | Xy | (800X ,)? oiX, (05X )2
8 17
16 21 4 16 38
24 5
32 —4 -9 81 1 —37 1369 39 1521
97 1369 1521

(* Note: 32 = 25.)

sary, but saves much calculation at little cost in accuracy. (In this table
sums and differences are entered in the lower of the two lines to which
they correspond.)

The final sums of squares are roughly proportional to the power in
successive octaves coming down from the folding frequency. They differ
by only a constant factor, equal to the number 2° of values X, used,
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Fig. 11 — Pilot-estimated power spectrum,

from the mean squares of a nested analysis of variance. For many pur-
poses they can be used as they come.

For the example of Table IIT we obtain sums of squares of 205, 441,
207, 97, 1369, and 1521. These are plotted in I'ig. 11 for the successive
octaves fy to fv/2, fv/2 to fu/4, fx/4 to fx/8, fv/8 to fx/16, fx/16 to
fv/32, and the remaining range fv/32 to 0. We see that the spectrum is
roughly flat.

‘When medium or large stored-program digital computers are available,
and the data is already available in machine-processable form (so-called
diamond copy), it will often pay to use less elementary pilot calculations.
Possible alternatives are discussed in Section B.18.

19. YVERY LOW FREQUENCIES

The change from continuous “signals” processed in analog equipment
to equally spaced “data” processed digitally has another important
practical effect. Analog equipment, unless special care is taken, does not
respond all the way down to zero frequency, and this automatically filters
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out the very lowest frequencies. This fact allowed us, in dealing with
continuous records, to treat the “signals” being processed as if they had
zero means. In dealing digitally with equally spaced data, all frequencies
down to zero are transmitted, unless we take special precautions. Conse-
quently, we must give serious attention to the very lowest frequencies.

(We must now distinguish between power (in the sense of a line) at
zero frequency and power density at zero frequency. The power spectrum
of a stationary random process with zero means may have finite power
density at zero frequency without having finite power there. However,
finite power at zero frequency may be introduced into the data in meas-
urement. It would then be desirable to filter out the power at (exactly)
zero frequency without affecting the power density at and near zero
frequency due to the stationary random process, but this cannot be done
perfectly.)

The need for such attention becomes clear when we consider the effect
of “small” displacements of the average. Suppose that most of the ob-
servations (say about 999 in 1000) lie between —100 to +100, with a
few falling outside one limit or the other. This would be the case when
the standard deviation is about 30, the variance about 900. If the average
of the observations were 5 or even 10, we might or might not detect at a
glance its failure to be zero.

The total power is the square of the average (de power) plus the vari-
ance. Numerically, perhaps 25 + 900 = 925 or 100 + 900 = 1000. All
the de power belongs to the very lowest frequency band, whose width is

Af = o7 -

If we have data at one second intervals for a period of 15 minutes, a total
of 900 points, we will have a folding frequency of one-half cycle per
second, and 900 elementary frequency bands before we reach the folding
frequency. Thus up to one tenth of all the power may be concentrated in
one 900th of the spectrum, so that the lowest frequency band has a power
density up to 90 times that of the average of the 899 others. It is not
surprising that precautions need to be taken to deal with such possi-
bilities. (After all, our standard spectral windows have side lobes more
than 1 per cent the height of the main lobe.)

Slow trends, which may reasonably be regarded as zero-frequency sine
waves, just as constant displacements are regarded as zero frequency
cosine waves, are not nearly so likely to involve quite so substantial
excesses of power density, but instances of this may and do arise.

Any way of dealing with these effects must essentially remove the
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lowest elementary frequency band, or both this band and the next to
lowest one. In the process it will also have to eliminate some parts of the
next higher elementary bands as well, since we cannot design a filtering
procedure entirely free of side lobes. Two classes of ways of doing this
are important. Either the X,’s can be linearly altered, as by subtracting
the mean of them all from each of them, before the mean lagged products
are calculated — calculated from modified data as if they were original
data — or additional computations may be made and combined with
either the mean lagged products or their cosine series transforms. Thus,
for example, the mean of all data may be calculated and the square of
this mean subtracted from each and every mean lagged product. The
effect of all of these modifications can, however, be summarized as apply-
ing the finite cosine series transform to

Cr - Eﬁ'r

where & 1dentifies a specific method of modification, rather than to the
(', alone.
In place of

ave [P} = Qulf) * P4(f),

we shall now have
ave {Pou(N)) = Quul(f) * Pu(f) = [Qis(f) — Ra(N)]* Ps(f)

where Ru(f) is related to the Ey, in the same way that Q.(f) is related to
the C, .

Details for certain special choices for E. are given in Section B.19.
It is there concluded that, among others, satisfactory choices for prac-
tical caleulation appear, for the present, to be, for removing possible
constants,

By = (X)° (independent of r)
and, for removing the effects of both possible constants and possible
linear trends,

1 2r 2 Y

3
16

where X+ and X— are the means of the right- and left-hand thirds of the
X values.

WarniNGg: It will almost never be wise to fail to use some £y, in a digital
computation.
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ANALYSsIS IN PracTICE

The two sections which follow discuss the questioning and planning
required whenever a digital analysis of equally spaced data is to be
made, and exhibit a sample sequence of calculation formulas which
might result from such planning. They are intended to summarize the
previous material in its application to analysis. (Application to planning
for measurement is treated next after this.)

20, PRACTICAL ANALYSIS OF AN EQUALLY SPACED RECORD

We may logically and usefully separate the analysis of an equally
spaced record into four stages — each stage characterized by a question:

(n) Can the available data provide a meaningful estimated spectrum?

(b) Can the desires of the engineer for resolution and precision be
harmonized with what the data can furnish?

(¢) What modifications of the data are desirable or required before
routine processing?

(d) How should modification and routine processing be carried out?
Tailure to adequately consider any one question properly, or failure to
apply any one answer, can make the entire analysis worthless.

The data presented will have come about by measuring some physical
phenomenon at regular intervals. Thus,

1. the spectrum of the phenomenon

2. the frequency response of the instruments used to make the meas-
urements

3. the probable magnitudes of measuring, and recording or reading
errors, and

4. the time separation between adjacent values
are all relevant.

The first stage of consideration isto inquire generally about these quan-
tities, and to determine whether either aliasing (see Section 12) or back-
ground noise is so heavy as to make the values almost wholly useless.
Thus, if the spectrum is believed to extend up to 10 megacycles with
substantial intensity, if the measuring equipment is flat to 1.2 kilocycles
and is 60 db down at 5 kilocyeles, and if the values are measured every
=iy of a second, we may as well stop here and go no further, since the
whole available spectrum (up to 100 cycles) will be aliased more than a
dozen times over. (The 1.2 kilocycle measurement bandwidth, which will
be alinsed 12 layers deep, will control rather than the 10 megacycle
phenomenon bandwidth.)

If, on the other hand, the equipment was flat to 10 cycles, down about
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6 db at 20 cycles, 15 db at 30 eycles, and 60 db at 50 cycles, we would
not expect any irremovable aliasing difficulties, and would expect to be
able to estimate the spectrum up to some moderate frequency — up to,
say, 20 cycles, 30 cycles, or 40 cycles, depending upon how much back-
ground noise was present. (The energy above 100 cycles would not be
recorded.)

In the next stage we should inquire into

1. the frequency resolution required

2. the fractional accuracy of estimation required, and

3. the total duration of data available, and the number of pieces into
which it falls.

Items 1 and 3 can be combined and converted into the approximate
number of elementary frequency bands (number of degrees of freedom
— see Section 9 which is based on Sections 6 to 8) possibly available for
each of the proposed estimates. This number can then be compared with
the number of degrees of freedom required (also see Section 9) to give
the desired fractional accuracy. If these are consistent, or if the desired
accuracy, or the desired resolution, or both can be modified to make
them consistent, then there is a good chance that the data can be per-
suaded to yield the desired results, and further inquiry is indicated. If
not, we should stop here.

Explicit relations among duration, resolution, and fractional ac-
curacy, the latter expressed in terms of 90 per cent interval (cp. Tables
I and II), are given in Section B.23. These lead to an approximate 90
per cent spread, expressed in db (decibels), of

14
v/ (total duration in sees) (resolution in ¢ps) — & — 4 (number of pieces)

a result which may often be conveniently used in such an inquiry.
At the beginning of the third stage, information should be sought as to
1. over what range of frequencies the spectrum is desired, and
2. whether any lines or high and narrow peaks are to be expected,
and at what frequencies.
Ciuided by this information, it should be possible to decide whether either
a. smoothing by groups (as in Section 17) to reduce computation
without loss of low-frequency information, or
b. rejection filtration (as in Section 16) to suppress well-established
lines or high and narrow peaks,
or both, are desirable. If desirable, they are then carried out before or
during the next step.
Unless advance information about the spectrum is exceedingly good,
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a pilot analysis (see Section 18) to establish the rough form of the spec-
trum will now be very much worthwhile. The result (or the very good
advance information, if available) will now make it possible to choose a
reasonable prewhitening procedure (or, possibly, to choose not to pre-
whiten). Onee suitable prewhitening (see Sections 11 and 15) has been
chosen, and either carried out or planned for, the third stage is complete.

Finally, the information on resolution and accuracy combine to specify
the width of spectral window desired, and hence (see Section 13) the
number of lags for which mean lagged products should be caleulated.
When these are in hand, they are modified and transformed (or, perhaps
more simply, transformed and convolved — see Section 13), adjusted to
sereen out very low frequencies, and the resulting power density esti-
mates are corrected for the prewhitening, and for grouping and/or re-
jection filtration (if any) used. The final estimates are best plotted on a
logarithmic power scale, since their accuracy will be roughly constant
on this seale. Crude confidence limits can then be caleulated from the
number of degrees of freedom (see Section 9) which would be present
in the individual estimates if: (i) the process were Gaussian, and (ii)
the prewhitened spectrum were flat. (The factor of safety of Section
8 will ordinarily be adequate.)

21. SAMPLE COMPUTING FORMULAS

We cannot preseribe one set of computing formulas for general use,
since there are rational reasons for different choices. All we can do is
illustrate a procedure which may work fairly well in many cases. (And
our example is not likely to be the only one with such properties. If the
reader understands, by comparison with adjacent sections, just why we
do what we do, he can compare other procedures with this example in a
meaningful way. He will have to understand much of what is said in
order to do this.)

If X,,t=0,1, ---, nare the given observations, which we will treat
as if at unit spacing, it is likely that P.(f) decreases substantially as f
goes from 0.0 to 0.5 = fy . (If it does not, then aliasing is likely to have
been serious, and satisfactory analysis at this spacing may be impossible.)
Prewhitening by '

X: = Xt - 06 thl
which multiplies P.4(f) by
1.36 — 1.20 cos 2xf,
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a factor increasing from 0.16 to 2.56, may be a wise prewhitening. (The
index ¢ will now start at 1, and not at zero.)
We calculate next

= ! 2 XK. — (i 2 er)“’
1 /

n—r 1

namely mean lagged products with an adjustment for the mean. (Further
adjustment for a linear trend might have been necessary. See Section
19.) Let us suppose that we do this forr = 0, 1, 2, ---, 24 = m.
(Some other choice may have been appropriate.)

Next we calculate the finite cosine series transform

m—1 .
vV, = [Cg +2 2 Chcos rr C-cOS ?'Trj|

= m
and the results of hanning (see Sections 5 and 13)
Jo = 3(Vo + V)
U =3V, + 3V, + Vo, l=sr=m-—1,
Up =3V + 3V

These can then be corrected for both prewhitening and the correction
for the mean by forming (see Section B.21)

n 1 R
n— m 2 Uo,
1.36 — 1.20 cos 5—
Om
! U l=r=m—1
2]_11_ ST = = ]

1.36 — 1.20 cos %

1

1 U
1.36 — 1.20 cos (1 —~ f) 9
Gm

as smoothed estimates of the power density. Estimates with subseript 0
will apply in the range just above zero frequency, those with subsecript »
near a frequency of r/(2m) cycle per observation, and those with sub-
seript m in the range just below a frequency of 0.5 cycle per observa-
tion.

In interpreting these estimates four cautions are important:

(a) aliasing of frequencies (see Section 12) may have taken place,



240 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958

(b) the estimates are smoothed with a crudely isosceles triangular
weighting function (see Sections 5 and 13) of full width 4/(2m),

(¢) no estimate will be more stable than chi-square on (2n)/m degrees
of freedom and, wherever the spectrum is not smooth, the stability of
the estimates will be appreciably less (see Section 9),

(d) adjacent estimates will not have independent sampling errors,
though those not adjacent are at least very close to being uncorrelated.

The units involved are such that the smoothed one-sided, aliased power
density on 0.0 = f = 0.5 is approximated by twice the estimates. The
pieces into which the variance would be divided, each coming from a
frequency band of width 1/(2m) cycles per observation, are estimated
by 1/(2m) times the corrected estimates.

PLANNING FOR MEASUREMENT

Up to this point, with the exception of part of Section 11, our discus-
sion has been concerned (i) with what happens when certain operations
are performed, and hence (ii) with how we should make the best of
what we already have.

The third aspect — planning the measurements or observations to
meet requirements — has not been adequately treated. (Both statis-
ticians and engineers concerned with measurement will agree that this is
the most vital aspect of all, but will, unfortunately, also have to admit
that, all too often, “salvage” work will be required because this third
aspect was omitted, and the observations made unwisely.)

In discussing “What data shall we take?””, “How shall we measure it?”’,
the same considerations will recur as in discussing ‘“How shall we analyze
it?”, but (i) they will be looked at from quite different aspects and (ii)
they will be even more important. Now, by planning in advance of data-
gathering, we may be able either to replace useless or difficult-to-analyze
measurements by usable ones, or to avoid making measurements which
could never provide the desired information.

The first basie decision has to do with the type of recording and analy-
sis to be used. Three types are in use today:

(1) Spaced: Analog use of intermittent recorders (photography of
situations or of dials, ete.) or digital recording at equally spaced inter-
vals (electronic reading of dials, photography of counters, ete.).

(2) Mized: Continuous recording (on film, calibrated paper rolls, ete.)
with the intention of analyzing equally spaced values to be “read” from
these continuous records.

(3) Continuous: Continuous recording (FM recording on magnetic
tape, ete.) with the intention of making an analog analysis.
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The choice among these types will depend on their particular advan-
tages and disadvantages, and on the availability of equipment, both for
recording and analysis. In almost every case, however, the detailed
problems will be surprisingly similar,

22, CHOICE OF FREQUENCY RESPONSE

In each instance there will be a problem of the response of the ob-
serving and transmitting or recording elements to high frequencies.
When less quantitative studies are made, it is usual to worry whether
the high-frequency response is large enough to “follow” the phenomena
precisely. To be sure, if recording is only at intervals, and the needle is so
blurred as not to be read, the high-frequency response may indeed be
reduced by filtering. Such filtering is too likely to be regarded as un-
fortunate rather than helpful. Effort tends always to be applied for
“faithful’”” recording. This is appropriate for recording specific tndividual
time histories for wvisual study, but is often most inappropriate for re-
cording sample time histories for stafistical study with the aid of sensitive
Jilters (analog or digital). (When the recording is continuous, be it on film,
oscillograph paper, or magnetic tape, the “writing” means has a limited
frequency response, and this will usually help to keep the record from
blurring.)

When the analysis is to be made on equally spaced data, whether the
recording be continuous or equi-spaced, thereisa real problem of aliasing.
And there is need for a basic choice of a frequency cutoff, usually in terms
of two frequencies such that (i) the experiment is only concerned with
frequencies up to the lower one, and (ii) frequencies beyond the upper
one will not be recorded. The need for such a choice in a continuous
system may not appear to be so acute, since only problems of noise or
non-linear distortion are involved (see Section 11). Yet in practice, it
will almost always be made — indirectly — by the choice of a writing
speed (which implies a frequency cutoff for a continuous recorder).
Eeconomic pressures to reduce both the volume of record, and the extent
of measurement and computation, act to lower the frequency cutoff, while
desires to follow the spectrum to higher frequencies act to raise it. The
proper choice comes from balanecing these pressures.

Sometimes in mixed systems, when continuously recorded data is to
be subjected to equi-spaced analysis, an attempt is made to compromise
matters by recording with a high cutoff, and then asking that the
measurements of this record be “‘eye averages” over periods long enough
for the record to show considerable variation. Such compromises do not
seem to work nearly as well in practice as their proponents suppose. Re-
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placing the “averages” by the results of “reading to the line”” at equi-
spaced points often seems to give better results, even though a smaller,
but unknown amount of aliasing is thus replaced by a larger, known
amount. Putting the filtering into the observing and writing equipment,
rather than into the (human) measurer and transcriber, will usually do
even better — better by a large margin.

If one can be confident of the upper limit, beyond which the power
spectrum will not be needed, it is usually best to record with a related
frequency cutoff, thus reducing noise complications, aliasing difficulties,
and the necessary bulk of the record.

Conversely, however, points must be recorded or measured fre-
quently enough (or a high-enough writing speed used) so that aliasing
(or loss of high-frequency response) is not serious. (For a given maximum
usable frequency, the sharper the cutoff, the less stringent this require-
ment.)

To summarize, the problems surrounding aliasing should lead to the
choice of a frequency cutoff which is usefully described by two frequencies
(which may reasonably be in the ratio of 1 to 2):

(a) a lower frequency, which is the highest at which important power
spectrum estimates will be made, and

(b) a higher frequency, at and above which no serious amount of re-
cording is done.

Both of these need to be chosen before settling finally on observing and
recording equipment. If equi-spaced data is produced, the folding fre-
quency may be as low as half-way between these two frequencies.

A prime essential to keep in mind is that all measurement, transmis-
sion, and analysis systems are essentially band-limited. Tt is always in-
advisable to try to cover too many octaves of log frequency while using
exactly the same techniques.

23. DURATION OF DATA REQUIRED

Instead of trying to compromise resolution and stability within the
limitations of available data, we may now consider the costs and ad-
vantages of getting still more data, or, perhaps, somewhat less data.
We face a three-way compromise among effort, resolution, and stability
(precision) of estimate.

Effort has to be measured in various ways, but the duration of initial
record will almost certainly have to be considered as one measure. It is
shown in Section B.23, where both precise definitions of the guantities,
and a corresponding formula for the necessary numbers of pieces of a
given length will also be found, that
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1y 200 (pieces)
2 (909 range in db)? 3
(resolution in eps)

o

(total duration in seconds) =

If, for example, a resolution of 0.1 cps is to be obtained from 6 pleces of
record and is to furnish stability of 2 db for (on the average) g of
the individual estimates, then the necessary duration will be

1 200
2 3
01

= 150 seconds.

This applies equally to analog processing of continuous records or to
digital processing of spaced records, so long as we apply the best methods
which we know to a shape of spectrum which is not exceptionally diffi-
cult to handle.

924, AMOUNT OF DIGITAL DATA-HANDLING REQUIRED

If spaced data are to be digitally processed, both the number of data
points to be used and the number of multiplications involved are of
interest.

If we can easily build in the desirable frequency cutoff, and have to
resolve a number of equally spaced bands spaced evenly from zero fre-
quency to some maximum frequency, then we will require about

[3 600
(909 range in db)?

+ (pieces)] (number of bands resolved)

data points and, roughly about

(9 1800
(90% range in db)?

+ 3 (pieces)) (number of bands resolved)*®

multiplications.

These last two results often give only preliminary indications. Aliasing
difficulties will increase these numbers. The possibility of smoothing by
groups will decrease them. Details and possible modifications of the
proposed system of data gathering and analysis need to be studied care-
fully before final estimates of the number of data points and the rough
number of multiplications are finally settled upon.

25. QUALITY OF MEASUREMENT AND HANDLING

In every case, careful consideration should be given to the quality of
measurement and data handling required (in terms of the dangers of,
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e.g.: time-varying frequency response, introduced noise, intermodulation
distortion, etc.). An extensive catalog would be out of place here, since
the problems are basically those of instrumentation engineering. But a
few reminders may indicate the diversity of problems which might arise.

A camera may be “clamped” to some object to record the relative
orientation of that object and something visible to the camera. The
mounting of the camera is never perfectly rigid, and vibrations will
occur ordinarily at frequencies far above the data-taking rate. Whatever
the frequency, these vibrations will introduce ‘“noise” into the record.
At least an order-of-magnitude calculation of the effects of likely vibra-
tion is needed.

Storage of a signal on magnetic tape will be a part of many measure-
ment-analysis systems. Because only rough spectra are wanted, AM
(amplitude modulation) recording may be planned. If the fact that AM
recording and playback is subject to considerable fluctuation in over-all
gain (db’s, not tenths db) is neglected, measurement planning may be
quite misleading.

In a complex analysis, where several spectra and cross-spectra (whose
analysis we have not specifically discussed) are involved, it might be
planned to plot the estimates of each spectrum and cross-spectrum
against frequency, draw smooth curves, and compute derived quantities
from values read from these eurves. Such a process has led to great
difficulties in certain actual situations, because of the “noise” introduced
by such visual smoothing which appears to have distinctive but unknown
properties. Such a graphical step may appear to be good engineering,
but it cannot be high quality data handling. Its use may nullify the
areful selection of other data processes, some of which are delicately
balanced.

Graphical analysis should ordinarily be reserved for:

(a) display of whatever spectrum or function of spectra is really a
final output,

(b) description of the actual effects of computational procedures, and

(¢) trouble-shooting.

26, EXAMPLE A

Suppose first that the spectrum of some aspect of the angular tracking
performance of a new radar is to be obtained; that angular tracking can
only be studied by photographing the target with o camera clamped to
the antenna; that frequencies near 0.27 eps are of special interest; that
the spectrum of tracking performance at higher frequencies is relatively
flat up to 10 ¢ps and then falls rapidly enough to be negligible beyond 40
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eps; that estimates at all frequencies up to 25 cps are desired; and that
stability to 41 db is derived. What are the requirements?

The total amount of tracking required is fixed by the resolution re-
quirement near 0.27 ¢ps, which we may suppose to be either 0.05 cps or
0.02 cps. These lead, respectively to durations of

| ry 1 S
(;5 + 50 + é) 0.05 > 1000 seconds

-

and

I AR EN corands
(.) + 50 + 5)@ > 2500 seconds.

&

Single stretches of either 16 or 40 minutes continuous tracking are al-
most certain to be out of the question. The length of piece available
would depend on the aspect of tracking performance studied, but a fair
figure for this illustration might be 200 seconds. Going to Section B.23
for the necessary formula, we find

é + 50 50.5
(number of pieces) = — = ———— = —— = 5.2
1 967

or
1
-4+ 50
9 =4 r
(number of picces) = ‘Ji = g%—,; = 13.7.
(200)(0.02) — =

From a purely experimental point of view, these amounts of data are
moderately hard to substantially hard to obtain, but we may suppose
them available as far as radar and target availability are concerned.

We come next to data taking and availability problems. We must
study the spectrum up to 25 eps. Since the spectrum is negligible only
above 40 cps, our folding frequency must be at least 32.5 cps, which
would fold 40 eps exactly back to 25 eps. Hence we need at least 65
frames a second. Consideration of available frame rates bring us to 64
frames 2 second as probably reasonable. This is 12,800 frames in each 200
second piece, a total film reading load of between 50 and 150 thousand
frames. This will require some hundreds of man-days of film reading,
but may perhaps be faced.

To caleulate directly the rough number of multiplications involved, we
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may begin by assuming that we are going to require the 0.05 or 0.02 cps
resolution all the way from 0 to 25 cps. Were this the case, then we would
require to resolve from

25 -
0.05 ~ 200
to
25 ..
m = ].,ZJO

frequency bands. The corresponding numbers of multiplications range
from

[4.5 + 450 + 3 (pieces)] (500)° =~ 120 million
to
[4.5 + 450 + 3 (pieces)] (1,250)* ~ 750 million.

The running time of an IBM 650 calculator on such a problem is about
10 hours per million multiplications, so that between

1,200 hours = 30 shift-weeks

and
7,500 hours = 188 shift-weeks

would be required. Clearly these machine times are out of line, and
attention should be given to ways of reducing this aspect of effort.

An application of smoothing by groups seems most likely to be effec-
tive, especially since the high resolution is only wanted near the low fre-
quency of 0.27 eps. Let us suppose that, in view of the supposed rather
flat spectrum out to 10 cps, the engineers concerned will be content with
two spectrum analyses, one with 0.5 eps resolution extending all the way
to 25 cps, and the other with 0.02 cps resolution extending only to 1 ¢ps.
What effect will this have on the computational load?

Notice first that it will have no effect on the radar-and-target operat-
ing and film-reading loads. These were fixed by the resolution-precision
requirements, and by the combination of this with the upper limit of the
actual spectrum affecting the camera. Replanning details of the analysis
will save nothing on either of these.

The broad-frequency low-resolution analysis will resolve about

25

]
0F = 50 bands
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and require roughly
[4.5 4 450 + 3(14)]-(50)" = 1.24 million multiplications

(since we shall need 14 pieces to obtain the required precision at a resolu-
tion of 0.02 eps). This would require about 12.4 hours machine time, a
quite reasonable amount.

The preparation of data for the low-frequency high-resolution analysis
—if we follow the suggestion of Section 17, requires less than 1.5
additions per original frame, since each datum contributes to four means.
This is at most 0.2 million additions and ean probably be combined with
the next step so as not to involve substantial machine time.

The conduct of the low-frequency high-resolution analysis will resolve
about

1.
0.

o

= 50 bands

]
35

and will require about another 12.4 hours of machine time.

Thus we have reduced machine time to about 25-30 hours, in pleasant
contrast with the remaining requirements of some hundreds of hours of
film reading and 14 test runs of 200 seconds each. The balance is ap-
proximately restored.

Our apparently blind use of the multiplications-required formula has
concealed one important point. Our caleulation of the time required for
the high-frequency low-resolution analysis tacitly assumed that we have
processed no more of the data than is required to meet the actual resolu-
tion-precision requirement.

The loosening of resolution from 0.02 eps to 0.5 cps in this part of the
analysis has reduced by a factor 25 the amount of data which must be
processed to meet the =1 db (90 per cent) requirement. Hence the two
hours machine time is predicated on processing only s%th of the available
data. If only about % of the data isto be processed for the high frequency
analysis, then it will be desirable to take the most typical 8 or 10 sec-
onds from each piece. The losses due to end effects will be somewhat
greater, it is true, but the advantages of increased coverage of the effects
of unplanned variation, consequent on using parts of all 14 runs, far
outweigh such considerations.

It would be possible to use only one run for the high-frequency analy-
sis, a possibility which emphasizes the fact that {3ths of the film reading
is done to obtain the raw material for averaging, for filtering out high
frequencies. If the hundreds of man-days of film reading look out of
line, and #f the line from the radar to the target is known not to change
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rapidly (with respect to an inertial frame of reference), then we are driven
to consider whether the “clamping” of the camera to the antenna could
modified in such a way as to provide a frequency cutoff between antenna
position and camera position. What would be desired would be a reliable
mechanical filter with a cutoff at 1 or 2 e¢ps, and substantial, reproducible
transmission up to, say, 0.5 eps. If such a mount could be taken down
from the shelf, then it would suffice to make (a) one 200-second run with
a stiff mount and 64 frames per second, and, say, (b) thirteen 200-second
runs with a mount of such designed softness, and, say 4 frames per sec-
ond. The total number of frames for reading would now be 12,800 for
run (a) and 800 for each run (b), a total of about 23,000 frames. This
might require about a man-month to read, a saving of several man-
months. Unfortunately, such a sharply-tuned low-pass mount would not
be likely to be on the shelf.

27. EXAMPLE B

As a second example, suppose a new solid-state device develops a noise
voltage with a power spectrum roughly proportional to 1/f* when under
test under most extreme circumstances — circumstances so extreme that
its average life is 30 to 50 milliseconds, and suppose that the detailed
behaviour of this spectrum is believed likely to provide a clue to the
proper theoretical treatment of some of the properties of this device.
Suppose further that, while it was believed that the shape of the spec-
trum of the noise from different examples of this device was the same,
the voltage levels of different devices were quite different. It might be
reasonable to ask for spectral measurements to #4-0.25 db resolving 1 eps
and covering from 1 cps to 500 cps. Direct measurements are likely to be
most difficult, for the power between 499 and 500 cps is about 1355553th
the power between 1 and 2 cps, a difference of 51 db in level. Our re-
cording and processing equipment is not likely to have the dynamic range
required for direct analysis.

Clearly we should prewhiten our noise as early in the measurement and
analysis system as we reasonably can. Fortunately, prewhitening here is

R

NV

Fig. 12 — RL voltage divider.
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operationally simple. A RL voltage divider, as indicated in Fig. 12 will
introduce an attenuation of voltage, if the load impedance is high,
amounting to

R+ ij‘
——| =1
\ jaL + L
If the original spectrum were
. 47r°A
P(j) - j-__] - CUQ 3
then the prewhitened spectrum would be
w? 4r°A L’
1+ {g BT
WP

which will be initially constant, and then decrease 6 db per octave, with
a corner at w, = /L, f. = R/2rL. As a first step in measuring a spectrum
out, to say, f = 2R/2rL, at which frequency the prewhitened spectrum
would be down about 7 db, such a change would be useful. The range of
frecuencies which could be usefully studied would not be appreciably re-
duced by such a change, even though the low frequency power level
would be greatly reduced by the prewhitening network, since the low-
frequency power level would not be seriously reduced below the former
power level at the corner frequency. If one could have been studied,
the other can be studied.

28. EXAMPLE C

The irregularities in the earth’s rotation have been studied by Brou-
wer,"” who reduced the available observations (times of occultation and
meridian passage) by averaging over individual years. He states “oc-
cultations so reduced in recent years have been demonstrated to yield
annual means essentially free from systematic errors if the observations
are well distributed over the year. ... The 8’s may themselves be the
accumulations of numerous smaller random changes with average inter-

vals much smaller than a year. The astronomical evidence throws no
further light on this, though ]’)Glhdpﬁ something may be gained by an
analysis of residuals in the moon’s mean longitude taken by lunations.”
These comments suggest that astronomical data can supply values once
a year, possibly no more frequently, and may be able to supply values
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about 13 times a year (once per lunation), certainly no more frequently.
Let us accept the first possibility as a basis for an example. (This is the
best example we know of a situation where equally spaced data cannot,
in principle, be had at a finer spacing.)

The information most nearly directly supplied by the astronomical
observations is At, the difference between ephemeris time and mean solar
time. Brouwer discusses two statistical models for its structure, both of
which are most easily deseribed in terms of the behavior of the second
differences of the observations. In the first, the true second differences
are constant over periods of varying length. In the second model, the
true second differences are independently and randomly distributed. In
either case, observational errors, independent from observation-period
to observation-period also contribute to the observed At’s.

If we were to plan an observational program to decide between these
hypotheses by spectral analysis we need first to specify the alternative
spectra. The first model seems never to have been made as precise sta-
tistically as the second. Brouwer’s fitted curves correspond to constancy
over periods of from 4 to 15 years. We should like to get a general idea
of the possible spectra corresponding to this model without making the
model too specific. Consider first a situation in which, except for the
effects of second differences of experimental errors, the observations are
constant in blocks of five, and where the values assigned to different
blocks are independent. The successive average lagged products (start-
ing with lag zero) are proportional to 5, 4, 3,2, 1,0, 0,0, . .. and it fol-
lows that the power density is proportional to

1+ gcosvrf/fy +-§ cos 2m f/fx + % cos 3 f/fx + %cos Axf/fw.

Calculation shows that this is high near zero frequency, falling rapidly
until, beyond about f/fy = 0.3, it consists of ripples with an average
height of less than Fsth the low frequency peak. If; instead of “constant
by fives”, the specific model were “constant by eights” or “constant by
tens”, still with independence between blocks, this peaking would be
more pronounced and confined to still lower frequencies. If the lengths
of the blocks were to vary at random, according to some distribution,
still with independence of value, the spectrum would be the correspond-
ing average of such spectra for fixed block lengths. The spectrum to be
expected for second differences of annual average observations then should
consist of a sum of two components:

(1) a “true” component peaked at low frequencies, falling rapidly by,
say, f/fx = 0.2 or 0.25, and continuing to f/fx = 1.00 with an average
height perhaps 1 per cent or 2 per cent of the low-frequency value,
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(2) an “observational error” component, corresponding to inde-
pendent. errors in the annual averages, and hence proportional to (1 —
cos (nf/fx))"-

In ecase the second model should apply, the first component would be
replaced by one with a flat density.

Fig. 13 shows the shapes of the three possible components. The natural
way to try to distinguish between the two models by spectral analysis
is to compare the spectral density in the middle range, say f/fy = 0.25
to 0.5 with that in a lower range, say below f/fy = 0.25. According to
Model I, the low-range density should be substantially higher than the
middle-range density, the latter consisting of the effects of observational
error (whose strength can be well estimated at the upper end of the spec-
trum). According to Model II, the middle-range density should be
slightly to somewhat greater than the low-range density, the increment
representing effects of observational error.

Without more detailed estimates of the relative sizes of the compo-
nents, it would be difficult to specify exactly how many observations
would be required to separate Model I from Model II, but 10 to 20
degrees of freedom in each of the ranges discussed should be quite help-
ful. This suggests 100 values of annual second differences, corresponding
to 102 years of careful astronomy, as likely to be helpful. Since Brouwer
gives annual values for 131 years, some 129 annual second differences are
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Fig. 13 — Components for two models of earth-rotation irregularities: (1) ““true
irregularity’’ component for first model, (2) “‘observational error’’ component for
either model, (3) “true irregularity’ eomponent for second model.
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available for trial, and it may be possible to answer the question without
waiting for many more years to pass.

It might well suffice to estimate smoothed densities over octaves such
as 0.0625 < [/fy < 0.125,0.125 < [/fy < 0.25,0.25 < [/fy = 0.5 and
0.5 = f/fy = 1. Thus we might consider using the add-and-subtract
pilot estimation method for initial exploration. The actual analysis of
Brouwer’s data is considered further in Section B.28.

APPENDIX A

FUNDAMENTAL FOURIER TECHNIQUES

In this appendix we review briefly certain aspects of Fourier transfor-
mation. These aspects may be regarded as dealing mainly with diffrac-
tion by slits, rectangular or graded, and by analogs made up of discrete
“lines”. Convolution and the so-called Dirac functions are specially
important as convenient tools. Some parts of the discussion will have no
direct bearing on the analysis of procedures for power spectrum estima-
tion, but are intended to familiarize the reader with analytical tools
which are used frequently throughout the remainder of this paper, and
which may be used to advantage in many other analyses of a similar
nature.

A1 Fourier Transformation

There are several formulations of Fourier transformation which differ
according to custom, convenience, or taste. The formulation which we
will adopt here is the one used by Campbell and Foster."* Given a fune-
tion of time, G(f), its Fourier transform is a function of frequency, and is
given by the formula

0

S(f) = f G- ¢ dt (0 = 2n1).

— 00

Conversely, given a function of frequency, S(f), its ourier transform is
a function of time, and is given by the formula

G = [ 8- if (w0 = 20f).

The term “frequency” is used here, not in the probability or statistical
sense, but in the sense of sinusoidal or cisoidal funetions of time (cos wi,
sin wt, €™').

Our preference for the Campbell-Foster formulation is based on the
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following points, arranged approximately in the order of increasing
weight.

I. Frequencies are expressed in cycles per second more naturally and
much more frequently than in radians per second. (In our analysis we
use w only as an abbreviation of 2xf, and only if it is typographically
convenient.)

2. Except for the sign of the exponent in the kernels, the transforma-
tion formulae are symmetrical. The assighment of the signs here is the
conventional one in transmission theory.

3. In most of the applications to communications problems, the fre-
quency functions are rational functions of p = iw, with real coefficients.
Hence, the reformulation of the transformation of S(f) to G(f) as

Gt = ! S( P )-e"’ dp

211 i 2

is o natural and convenient step in the ealculation of the integral by the
method of residues.

4. The transformation formulae correspond to the conventional rela-
tions between the impulse response (response due to a unit impulse ap-
plied at ¢t = 0) and the transfer function (ratio of steady-state response to
excitation, for the complex excitation ¢™’) of a fixed linear transmission
network. These network functional relations are commonly regarded as
Laplace transformations rather than Fourier transformations. As a
matter of fact, however, the circumstances in almost all practical appli-
wations are such that there is no essential difference between Laplace
transformations and Fourier transformations. Impulse responses are
zero for ¢ < 0 and vanish exponentially as ¢ — «, and transfer functions
are analytic on and to the right of the imaginary axis (including the
point at infinity) in the complex p-plane. On the very rare occasions
when a communications engineer might be interested in the behavior of a
network under energetic initial conditions, he has ways of introducing the
initial conditions without using Laplace transforms (Guillemin®).

It should be noted that, since G(f) must be a real function, the real
part of S(f) must be an even function, and the imaginary part of S(f)
must be an odd function. The even part of G(t) and the even (real) part
of S(f) are cosine-transforms of each other. The odd part of :(t) and the
odd (imaginary) part of S(f) are negative sine-transforms of each other.
It should be noted also that if G(#) and S(f) constitute a transform-pair,
then G(—¢) and S(—f) also constitute a transform-pair. I'urther, S(—f)
is equal to S*(f), the complex conjugate of S(f).
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A.2 Some Transform-Pairs

We will now turn our attention to some transform-pairs which we will
require directly or indirectly in the analysis of procedures for power spee-
trum estimation. We will use special symbols for some of these trans-
form-pairs. For later reference, these transform-pairs will be collected in

Table IV.

The first transform-pair, which is easily worked out, involves a sym-
metrical rectangular time function (box car of length 27',), viz.

Dy(t) =1 [t] < Ty,
= % | ¢ [ = Tm )
=0, [t| > Tw.
TasLE IV
1. Doty =1, |t| < T o
sin wl,,
1 Q {Jr) = 2Tm
=5 el = “ T
= 27, dif 2fT,,
=0,|t|>Tn
2 | £ sin wa,,.)ﬂ
= —_ < =T
D) =1 - le] = Tn () zm( T
=0, [t] = T = T, (dif f7)?
3 80 — to) e~iwty
4 CcoSs wol 3 {ﬁ(f + fn) + 8(f — fu)]
5.1 Va3 a0 = L s + man Qull 5 40
2
wAl |
a=m—1 = Af-cot —-sIn mwAl
2
+at- 2 80t —gab)
a=—m+l dif 2f(m-Al)
AL = 2(m-At) cos (xf-Af) —m
+ 2 5(t — mAl)
JR— gm0 { 1) q;m q
6. Vit; Al = At-q=§w 8(t — qat) AN\ al = q:._ma = AL
1
7. Alt; AD V( ;_)
At
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The corresponding frequency function is

Qu(f) = ZTE“’—T- = 2T, dif 2T,
Ty
(The values assigned to Dq(t) at the end points || = T, are those re-

sulting from the transformation of Qu(f) to Dy(f). Of course the values
assigned at these two points do not influence the result of the transforma-
tion of Dy(t) to Qu(f)). Except for scale factors, this frequency funetion
is the function dif ¥ = sin mu/7u which recurs constantly in this subject.
It is often convenient to regard it as the diffraction pattern (in frequency)
due to passage through a rectangular slot (in time). The behaviour of
dif 2f7,, is shown in. Fig. 14.

The second transform-pair, which is almost as readily worked out as
the first, involves a symmetrical triangular time function, viz.

Dl(t):].“‘l—q—f"-', ltléTm,

:0, |t|;Tm-

The corresponding frequency function is
o\ 2
Ou(f) = T (%> = T, (dif ST
=f T
Except for scale factors, this frequency function behaves as shown in
I'ig. 14.

The third transform-pair involves a so-called Dirac function as the
time function. The Dirac function is not a function in the strict mathe-
matical sense. It is called a “measure” by L. Schwartz.” For our pur-
poses, it will only be necessary to identify 8(f — f)-dt formally with
dh(t — t) where h(t — f) is Heaviside’s unit-step function, viz.,

(it — t) = 0, t <l
=1, t>tl
and to interpret all integrals as Stieltjes integrals. Hence if the time
function (to use the term loosely) is

Gt) = 6(t — )
then, the corresponding frequency function is
S(f) = e ™.
It should be noted that while 8(t — &) is easily formally transformed
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into a frequency function, the latter is not so readily transformed into
the original time function.

The fourth transform-pair involves a symmetrical pair of Dirac func-
tions as the frequency function. Thus, the time function

G(t) = cos wl (wo = 2mfo)
corresponds to the frequency function

S(f) = 26/ + fo) + 8(f = Jo)l.

If the reader is disturbed over the fact that we are evidently going to
base our analysis, at least initially, on the use of Dirac functions, he
should note that Dirac functions are always paired with functions which
are used widely and freely in transmission theory although they are not
realistic in a physical sense. I'unctions of time, such as cos wi, which
represent, an infinitely long past and future history of activity, are not a
bit more realistic in a physical sense than are “infinitely sharp” lines in
the frequency spectrum. Similarly, functions of frequency, such as
exp(—1iwly), whose ahsolute values do not vanish as f — «, are not a bit
more realistic than impulsive “functions” of time. Nevertheless, as we
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will see later on, these unrealistic pairs may be used as convenient bases
for a wide variety of realistic pairs. They thus serve a very useful purpose.
The fifth transform-pair involves a finite Dirac comb as the time func-
tion, viz.
At g=m—1
Va(t; A) = 5 8(+maAd) + Al > 8t — qat) + %5

g=m+l

(t — mAtL).

This is elearly a discrete approximation to Dy(t) for T, = m-At. The
corresponding frequency function, which is easily worked out with the
help of the third transform-pair (summing the exponential terms before
introducing trigonometric equivalents), is

dif 2f(m- At)

Qu(f; Al) = At cot O—JZA—t-sin mwAt = 2(m-At) cos (xf- Af) & 1Al

Except for a scale factor, the initial behaviour of this frequency function
is illustrated in Fig. 9. Clearly, since cos 0 = dif 0 = 1, the limit of
Qu(f; Af), when At — 0 with m-At = T, held constant, is o(f). This
corresponds to the formal convergence of V. (¢; Af) to Do(?).

We have defined this finite Dirac comb with a half-sized Dirac fune-
tion at each end hecause the corresponding frequency function has
smaller side lobes, relative to the main lobe, than for the finite Dirac
comb with a whole Dirac function at each end. This is easily seen from
the fact that the effect of adding a further half-sized Dirac function at
each end of V,(¢; At) is to add Al-cos mwAt to Qo(}; Al).

The frequency function Qu(f; Af) is periodic, with a period of 1/At cps.
It is symmetrical about every integral multiple of 1 /(2At) eps. Thus, it
has an absolutely maximum value of 2m-Af at the integral multiples of
1/At eps. It is zero at the integral multiples of 1/(2mat) eps which are
not integral multiples of 1/Af cps. For large values of m and small values
of wAt, it behaves approximately like Qu(f).

The sixth transform-pair involves an infinite Dirac comb in time, and,
as it turns out, also an infinite Dirac comb in frequency. The time func-
tion is the formal limit of V,.(t; Af) as m — <, namely,

v(t; Af) = Al qf 8(t — qAl).

g=—o0

The corresponding frequency function is

(3)- Ex) o)
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This may be surmised from the fact that

1/(24t)
f Qo(f; At) df = 1 for any m
)

—1/(2A¢

while

m-»a0

hmf Qu(f;dt) df = fhm Si(2rmeAt), (Where Si(a) _=_f SmTydy)
w00 0

= 1foranyein0 <e <2_At'
The result may indeed be obtained by applying the fourth transform-
pair with 7',, = m- At to the formal Fourier series representation of the
infinite comb '

q=00
Vi, At) =1+ 2 Z cos 2;?‘.
=1

Since
V. (t; At) = Dy(t)- V(5 At)

we also have, as we shall see in the next section,

Qulf; A = Qulf) + A (f; ﬁ)

Z Qu(f——

q=—00

The seventh transform-pair arises from the sixth by dividing by At
on both sides.

A.3 Convolution

If G(t) = Gi(f)-Ga(t), then the Fourier transform of G(f) may be ex-
pressed in terms of those of G1(f) and Ga(t) as follows.

s = [ : GilD) - GaD) - ™ dit,

= [0 [ s@ e & |-
- | : [ [ : Gu(t) - ¢~ dt] - Sa8) d,

=[50 - 050 a
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This relation, in which Si(f) and Sa(f) are interchangeable, is commonly
expressed in the symbolic form
S(f) = Silf) = Sa(1).

The implied operation on Sy(f) and Sy(f) is called a convolution. In par-
ticular, S(f) is said to be the convolution of S,(f) with Su(f).
Similarly, if S(f) = Si(f)-S:(f), then

G(t)

Il

[ 6 =60

= (1(1) *= Ga(2).

Thus, multiplication and convolution constitute an operational trans-
form-pair.

(Convolution is often called by a variety of names such as Superposi-
tion theorem, Faltungsintegral, Green’s theorem, Duhamel’s theorem,
Borel’s theorem, and Boltzmann-Hopkinson theorem.)

It may be noted in the detailed derivation above (putting f = 0),
that

[ 6060 de = [ 80%()-5u(0)-df
where S;*(f) is the complex conjugate of S;(f). This is Parseval’s theorem
of which a very useful special case is

[Cewra= [ 1swfa

An example of convolution is supplied by the symmetrical triangular
time function in the second transform-pair. This time function is the
convolution of two symmetrical rectangular time functions from the
first transform-pair, with appropriate scalar adjustments. Another
example is the infinite Dirac comb V(¢; At), which may be regarded as
the convolution of the finite Dirac comb V,(f; Af) with the infinite
Dirac comb A(t; 2maAl), that is

V(t; At) = Va(t; Al) * A(t; 2mAl).

As the reader may easily verify, this corresponds to

A (f; é) = Q(f; AD)-V (_f; zniﬁ)

Convolution of time functions occurs in communications systems when-
ever a signal is transmitted through a fixed linear network. If the input
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signal is G4(t), and if the impulse response of the network is W(z), then
the output signal is*

6 = [ W~ -G an

Il

W(t) = Gi(2).

The so-called linear distortion of the signal due to transmission through
the network can be (and occasionally is) examined in terms of the effects
of convolution, but the common practice among circuit engineers is to
conduct the examination in terms of the corresponding frequency func-
tions. There are good reasons for this common practice. The most im-
portant of these reasons are:

1. The relation between the frequency functions is simpler, viz.

S(f) = Y()-5u()

where Y (f) is the transfer funection of the network.

2. The effects of amplitude distortion of the signal and of phase dis-
tortion (of the unmodulated signal) may be examined independently.
While phase distortion is eritical in the transmission of pictures (fac-
simile), it is relatively unimportant in the transmission of speech or
nmusie.

3. The transmissign characteristics of fixed linear networks are most
easily calculated or measured accurately in terms of frequency rather
than time.

4. Fixed linear network design techniques based on frequency funec-
tions are today much further developed (simpler, more powerful, and
more versatile) than those based on time functions.

Convolution of frequency functions oceurs in communications systems
whenever a carrier wave is amplitude-modulated by a signal. If the input
signal is (1({), and if the carrier wave is cos wyf, then the output signal,
with suppressed carrier, is

G(t) = Gy(t)-cos wyt

* It may be of some help here to think of A as “‘excitation time”, and of { as
‘“‘response time’’. In the equivalent formulation

G(t) = f W()-Gi(t — ) dr

we may think of + = ¢ — X as the “age” of input data at response time.

At this point attention is called to a device which will be used many times to
simplify analysis, which is to use — = and + = as limits of integration, letting the
integrand take care of the effective range of integration. In this case, if Gi(\) =0
for A < {y, and W(r) = 0 for r < 0, the effective range of integratinn would be
o< A<tor0<r<t—to.
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and the relation among the corresponding frequency functions is

S(f) = Su(f) =5 [6(f + fo) + 8(f — fo)l

=3 S+ f) + 3 8:(f = fo).

The convolution of frequency functions corresponding to the amplitude-
modulation of a carrier wave is so naturally visualized simply as shifting
the signal spectrum (frequency function) that it is almost never vis-
ualized in any other way. It should be observed, however, that this
point of view depends critically upon the two-sided specification of the
signal spectrum, in amplitude and phase, to give the correct picture of
the sidebands, whether the amplitude-modulation scheme under con-
sideration be double-sideband, single sideband, vestigial sideband, or
two-phase (as in TV chrominance signals). Further, the two-sided specifi-
cation of the modulated-carrier spectrum is essential for a correct picture
of the demodulation process used to recover the signal.

For present purposes we will be interested in econvolution not only as
a tool for the synthesis of new transform-pairs but also as an analytical
tool. For example, by regarding a time function (f) as the product of
two other time functions G1(f) and Ga(t) we can make use of the re-
lation S(f) = Si(f) * S:(f) to reach insights about S(f) which do not
come easily from the explicit form of S(f).

To make convolution a useful analytical tool, we have to visualize it
in some convenient way. This may be done in three ways. The relative
merits of these three points of view depend upon the circumstances in
any particular case.

In the first place, convolution may be visualized as a stretching process.
For example, in the equation

6 = [ Gt — N)-GaV) dn

we visualize Go(N)-d\ as a rectangular element of Gu(t), originally con-
centrated at { = A. This rectangular element is then stretched into the
area under the elementary curve Gi{t — ) -Ga(N) -d\ regarded as a fune-
tion of {. This elementary curve has the shape of G1(¢) with origin shifted
to t = A. The total effect at any particular value of ¢ is then obtained
by integration over A. In this example, we have regarded G,(t) as the
“stretcher” operating on each element of Gs(t). Of course, since convolu-
tion is commutative, we may interchange the roles of the two functions.

In the second place, if one of the functions in the convolution consists
exclusively of Dirae functions, each Dirac funetion may be regarded as
a “shifter” operating on the other function in the convolution. For ex-
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ample,
80— a)+ GO = [ 8 —a—2GO) d\ = 6 — a).

In the third place, convolution may be visualized as a weighted inte-
gration with a moving weight function. For example, in the equation

G() = _[ TGt — V-GV

we regard G(t) as the integral of Gu»(A) with weight funetion G(t — A).
The position of the weight function with respect to the A scale depends
upon the value of ¢. In the event that the weight function has unit area,
G(t) may be regarded as the moving weighted average of Gy(M\). (As
previously noted, the roles of the two functions may be interchanged.)

As an example of the use of the ideas described above, let us assume
that we have a function Gy(f) which is zero outside of the interval
0 < ¢ < T, and for which the frequency function is Sy(f). Let us gen-
erate a periodic funetion G(f) by convolving Gy(t) with A(¢; T). Then,
since

G{l) = Go(t) » A(; T)
the frequency function corresponding to G(t) is, from Item 7 of Table IV,
1
S(f) = Su(f)-v (f} ?)
As we expect, S(f) consists of “lines” (of infinite height but finite area)
at uniform intervals of 1/T c¢ps. The complex intensities (areas) of these

lines represent the amplitudes and relative phases of the terms in the
conventional Fourier series representation of G(f). Thus,

G(t)

Ii

[ sty as
- qig S, (_) Qim0

T

As a second example, which is in a sense the dual of the first, let us
assume that we have a function Gy(t) for which the frequency function
So(f) is zero outside of the band —fy < f < fo . Let us generate a discrete
time series G(¢) by sampling Gy(¢) at uniform intervals of 1/(2f,) seconds.
If we regard sampling as a multiplication by (or as amplitude-modula-
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tion of) an infinite Dirac comb, then

1
G(t) = Go(t) - A (t, 2—),—0)

Hence, the frequency function corresponding to G(1) is

S(f) = Solf) = V(S5 2fo),
or, explicitly,

=0

S(f) = 2fu' Z So(f - 2qfn)-

g=—=

If this frequency function is multiplied by a frequency function Si(f),
where

S = =y 171 < fo

it will revert to So(f). Thus,
Sif)-S(f) = So(f)-

Hence, if Gy(¢) is the time function corresponding to Si(f), namely,

sin wol
Gi() = =,
wol

then
Gl(t) * G(t) = Gn(t).

Thus, sampling Go(2) to get the discrete time series G(f), and convolving
G(1) with Gy(1), restores Go(f) exactly. This result reflects the well-known
sampling theorem in information theory. The effect of sampling Gy(f) at
uniform intervals of other than 1/(2fy) seconds is readily visualized.

A4 Windows

If a time function is even (and of course real), the corresponding fre-
quency function is real (and of course even), and conversely. These cir-
cumstances will prevail when we deal with autocovariance functions,
power spectra, and appropriate weight functions. Under these circum-
stances, the weight functions will be called windows. Such windows will
be considered in transform-pairs, and the members of any pair will be
distinguished as the lag window, and the spectral window.
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Time windows convolved with periodie functions of time have been
used by Guillemin,” under the name “scanning functions”, to examine
the behavior of weighted partial sums of Fourier series. We use them in
Sections B.4 and B.10 where we call them data windows, and their
TFourier transforms (which may be complex) frequency windows.

A.5 Realistic Pairs from Unrealistic Pairs

Transform-pairs which involve Dirac functions are very easily con-
verted into a wide variety of realistic pairs. As an example, let us con-
sider the sixth pair (infinite Dirac combs) which requires two convolu-
tions for conversion to a realistic pair. If we convolve the time functions
of the first and sixth pairs, taking 7, < Af, we get a time function
which represents an infinite train of narrow rectangular pulses of unit
height. The corresponding frequency function still consists of Dirac
functions but these now do not have a uniform intensity. If we next
multiply the time function of this pair by the time function of the first
pair, taking T',, >> Af, we get a time function which represents a long but
finite train of narrow rectangular pulses. The corresponding frequency
funetion is continuous and consists chiefly of very narrow peaks of finite
height approaching zero as f — =.

A sinusoidal carrier wave of finite though great length may be repre-
sented as the product of the time functions of the first and fourth pairs
with T, > 1/fo. The corresponding frequency function is continuous
and consists of very narrow peaks at 4f, , with much lower subsidiary
peaks of height approaching zero as f — .

If the time function of the third pair is convolved with the time func-
tion

G@) =0 t<0
= ;-,e"“" t>0,
the resultant frequency function is
- 1 —iwlg
S = v r

of which the absolute value falls off asymptotically like 1/f as f — oo,
however small 7'(>0) might be.

In line with this discussion, it should be noted that a realistic “white
noise’” spectrum must be effectively band-limited by an asymptotic fall-
off at least as fast as 1//°. Under certain circumstances, however, we may
assume that the spectrum is flat to any frequency. Let us suppose that
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the spectrum is in fact

2

a

_ g
PP = L) [ rnar

2 . . . .
where ¢~ is the variance. The autocovariance is
2 —
Clr) = o -e welrl

If we transmit this noise through a network with an effective cutoff fre-
quency well below f., we may assume for an approximation that

9

c

and, therefore, that

C(r) = — 5(1’)
fc
although such an assumption is unrealistic if carried to indefinitely high
frequencies (the input noise would have infinite variance). Hence, if the
impulse response of the network is W{¢), the autocovariance of the out-
put noise is

Cout(tl' - tJ)

ave {[: W(r)X(t: — 1) dry

: f U W) Xt — ) drg}

_ ff W)W () -Ct: — t; — 71+ ro)dry dr

—a0

f W) - W — £ + t;) dr.

7rc

In particular, the variance of the output noise is

Con0) = 2 [ OGP

which by Parseval’s theorem is equivalent to

a9

Can & % [ 1Y) Paf

where Y(f) is the transfer function of the network. These results are
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realistic. (The variance of the output noise is finite and approximately
correct).

A.6 Some Trigonomelric Identilies
In this section we develop some trigonometric identities which will be

needed later on. We start with the equation

sin (@ + b + Du

sin u

i cos (¢ + 2hu) = cos [y + (b — a)u]

which is easily obtained by substituting
ei:c + e—iz

2
in the left-hand member, summing the exponential terms and making
some elementary trigonometric substitutions. By substituting ¢ + =/2
for ¢ we then get

b
> sin (¥ + 2hu) =

cos T =

sin (@a+ b+ Du

sin u

sin [y + (b — a)ul.

Now, setting u = «f, and using the function introduced in Section A.2,

sinpu _ (sin pxf)/prf _ dif pf
psinu  (sinaf)/=f  diff’
which, on differentiation, yields
d (dif pf) _ (dif pf)( dit’ pf  dif’ f)
@ty \aits/\Pditgr ~ diff )

Before we rewrite our summation formulas in terms of such ratios of
“dif” functions, we need to appreciate their behavior. For p not very
small, (dif pf)/(dif f) behaves much like the numerator for pf small
and moderate. The effect of the denominator is to force symmetry around
integer multiples of £, so that the peak at f/ = 0 is repeated at f = 1, 2,
3, - -, thus making its behavior consistent with aliasing. For 0 = f = §
its other effects are minor, since in this range (2/7) =< dif f = 1, while
the extrema of dif pf have shrunk from 41 to £2/(pwr). For most con-
siderations, therefore, we can approximate this ratio by the numerator.

We now rewrite our summations as means, introducing (dif pf)/(dif ),

finding
1 S _dif (@ + b + 1f
Ty ; cos (¢ + 2haf) = T 7 cos [y + (b — a)xf]

1 2, . ) _dif (@ + b+ Df
a—+"b+—1§a:sm W + 2hf) = &f f

sin [y + (b — a)7fl.
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Differentiating with respect to f, and multiplying through by
—(a+ b+ 1)/@2m),

we get

s if b
; hsin ( + 2hrf) = (d (a ;;ff—i— l)f)

.|:b ; “@+b+ 1Dsinly + & — a)nf]

_(m+b+nmmm+b+nf
o dif (@ + b+ Df

o+ b+ 1dif' f\ B
- — diff) cosly + (b — a)w ]J

with a similar formula for
b
> hcos (Y + 2hxf).

We shall now use these formulas to obtain results about the average
values of certain quadratic functions of chance variables Xy, X1, -+,
X. . The average value of any such quadratic function can be repre-
sented in terms of a corresponding spectral window Q(f) in the form

CGEOY

whenever
ave { X X, = f cos 2rq f-2P(f) df
0

for all suitable integers ¢ and ¢, since the quadratic function can be

expressed as a sum of multiples of terms of the form X,X,,,. To deter-

mine the height, Q(fu), of the spectral window corresponding to a specific

quadratic function, it suffices to consider the special case 2P(f) =

8(f — fo), for which ave {X, X, ,} = cos 2rgfy, when the average value

of the quadratic function for such a special set of X, is exactly Q(f).
If ave {X,X,,,] = cos 2rgf, we easily find that

| | B
”%Q+b+1¥*0Q+d+1ZAO}

b

1 1 . ,
=a+b+1§c+d+1;m”ﬁ@—m
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_ Zdlf(C'i‘d‘l‘l)f

cos (—2rfh + (d — o)=f)

"a+b-|-1 = . diff
_dif (@ + b+ Dfdif (¢ + d + Df o
B dif f it/ cos (d — ¢ — a + b)nf

~dif (@ + b+ Dfdif ¢ +d+ Dfcos{d—¢—a+ O)af

any of these expressions being the spectral window corresponding to

(a+b+1_EaX")( +£+1§‘X)

Making the same assumption, we find that (where n = 2¢{ + 1)

el ()

']
>~ gh cos 2xf(g — h)
tf —L

2
i g (d_i'f.nf) (?—i di.f’ n_n di.f’ f) sin 2xfg
4

dif f / \2x dif nf 2« dif f
_n (dif nf)z (1 dif' nf 1 dif’ f)"a
$\dif f/ \r dif of  nr diff/°

These expressions therefore represent the spectral windows correspond-

ing to
¢ 2
(Z hX,.) :
=
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GLOossARY oF TERMS

Add-and-subtract method

A method of roughly estimating spectra based on successive additions
by non-overlapping two’s followed by a differencing. (18, B.18 and
B.28.)

Alias

In equally spaced data, two frequencies are aliases of one another if
sinusoids of the corresponding frequencies cannot be distinguished by
their equally spaced values (this oceurs when f; = 2kfy + f, for integer
k); the principal aliases lie in the interval —fy = f = fv. (See also 14.)
(Also aliased, aliasing, ete.)

Aliased spectrum

See Spectrum, aliased.

Analysis, pilot

Any of a number of methods of obtaining a rough spectrum, including
the add-and-subtract method (18, ete.) the cascade method (B.18), the
complete add-and-subtract method (B.18).

Autocorrelation function

The normalized autocovariance function (normalized so that its value
for lag zero is unity).

Awutocovariance funciion

The covariance between X(¢) and X (¢ + 7) as a function of the lag r.
If averages of X(¢) and X (¢ + 7) are zero, it is equal to the average value
of X()-X(¢ + 7). It can be defined for a whole ensemble, a whole fune-
tion stretching from — « to 4, or for a finite piece of a function; in
the latter case it is called the apparent autocovariance function (see 4).
Certain related functions are called modified apparent autocovariance
functions (also see 4).

Autoregressive series

A time series generated from another time series as the solution of a
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linear difference equation. (Usually where previous values of output se-
ries enter into determination of current value.)

Average

The arithmetic mean, usually over an ensemble, a population, or some
reasonable facsimile thereof.

Band-limited function

Strictly, a function whose Fourier transform vanishes outside some
finite interval (and hence is an entire function of exponential type);
practically, a function whose Fourier transform is very small outside
some finite interval.

Box-car function

A function zero except over a finite interval, in the interior of which it
takes a constant value (often +1).

Cardinal theorem (of interpolation theory)

A precise statement of the conditions under which values given at a
doubly infinite set of equally spaced points can be interpolated (with the
aid of the funetion (sin (x — 2.))/(z — z:) to yield a continuous band-
limited function. (See B.1.)

Cascade process (of spectral estimation)

A process of spectral estimation in which a single step is repeated
again and again, each step yielding both certain estimates and a con-
densed set of data (ready for input to the next step). (See B.18.)

Chi-square

A quantity distributed (strictly exactly, but practically approxi-
mately) as z;° + 22" + -+ + a’ where z;, x2, - -+, & are independent
and Gaussian, and have average zero and variance unity.

Continuous power spectrum

A power spectrum representable by the indefinite integral of a suit-
able (spectral density) function. (All power spectra of physical systems
are continuous.)
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Convolution

The operation on one side of a Fourier transformation corresponding
to multiplication on the other side. (See A.3 for detailed discussion.)

Cosine transform

A series (see 13) or integral (see 2) transform in which a cosine of
the product of the variables is the kernel.

Covariance

A measure of (linear) common variation between two quantities, equal
to the average product of deviations from averages. (See 1.)

C'ross-spectrum

The expression of the mutual frequency properties of two series analo-
gous to the spectrum of a single series. (Because mutual relations at a
single frequency can be in phase, in quadrature, or in any mixture of
these, either a single complex-valued cross-spectrum or a pair of real-
valued cross-spectra are required.) (Also cross-spectral.)

Data

As specifically used in this paper, values given at equally spaced
intervals of time (often called time series).
Data window

A time function which vanishes outside a given interval and which is
regarded as multiplying data or signals defined for a more extended
period. (Data windows are usually smooth (graded) to improve the qual-
ity of later frequency analysis.)

Degrees of freedom

As applied to chi-square distributions arising from quadratic forms in
Gaussian (normal) variables, the number of linearly independent squared
terms of equal size into which the form can be divided. In general, a
mensure of stability equal to twice the square of the average divided by
the variance.

Delta-component

A finite contribution to the spectrum at one frequency (B.10 only).
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Diffraction function

. sin T
dif » = .

Dirac comb
An array of equally spaced Dirac functions, usually most of which
are of equal height.

Dirac function

The limit of functions of unit integral concentrated in smaller and
smaller intervals near zero. (See A.2 for fuller discussion.)

Distortion

Failure of output to match input. (Often specified as to kind of failure
as linear, amplitude, phase, non-linear, ete., cp. A3)

Effective record length

Actual length of record available reduced to allow for end effects.
(See 6.)

Elementary frequency band

An interval of frequency conveniently thought of as containing “a
single degree of freedom”, equal to the reciprocal of twice the duration
of observation or record. (Since both sines and cosines may occur, it
requires fwo elementary frequency bands to contain “an independently
observable frequency.”)

Ensemble

A family of functions (here functions of either continuous or equi-
spaced time) with probabilities assigned to relevant sub-families.
Equivalent number (of degrees of freedom)

See second sentence under degrees of freedom.

Equivalent width

The extent of a function regarded as a window as expressed by the
ratio of the square of its integral to the integral of its square. (See 8.)

Filtered spectrum

Spectrum of the output from any process which can be regarded as a
filter.
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Folding frequency

The lowest frequency which “is its own alias”, that is, is the limit of
both a sequence of frequencies and of the sequence of their aliases, given
by the reciprocal of twice the time-spacing between values, also called
Nygquist frequency.

Fouwrier transform

Operations making functions out of functions by integration against a
kernel of the form exponential function of 4/ —1 times frequency times
time. Often, including here, defined differently for transforming time
functions into frequency functions than for transforming frequency
functions into time functions. (See A.1 for details.)

Frequency

A measure of rate of repetition; unless otherwise specified, the num-
ber of cycles per second. The angular frequency is measured in radians
per second, and is, consequently, larger by a factor of 2=.

Frequency window

The Fourier transform of a data window.

Gausstan

A single quantity, or a finite number of quantities distributed accord-
ing to a probability density representable as e to the power minus a
quadratic form. (Also called normal, Mazwellian, ete.) Also, a funetion
or ensemble, distributed in such a way that all finite sections are Gaus-
sian. (See 1.)

Hamming

The operation of smoothing with weights 0.23, 0.54 and 0.23. (After
R. W. Hamming.)

Hanning

The operation of smoothing with weights 0.25, 0.50 and 0.25. (After
Julius von Hann.)

Hyperdireetive antenna

An antenna or antenna system so energized as to have o more compact
directional pattern than naturally corresponds to its extent (as measured
in wavelengths).
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Impulse response

The time function describing a linear system in terms of the output
resulting from an input described by a Dirac funetion.

Independence (statistical, of estimates)

In general, two quantities are statistically independent if they possess
a joint distribution such that (incomplete or complete) knowledge of
one does not alter the distribution of the other. Estimates are statis-
tically independent if this property holds for each fixed true situation.

Independent phases

An ensemble has independent phases when it can be approximated by
ensembles consisting of finite sums of (phased) cosines (of fixed fre-
quencies) whose phases are mutually independent. Continuous spectrum
and independent phases imply Gaussian character. Every Gaussian
ensemble has independent phases.

Intermodulation distortion

Non-linear distortion, especially as recognized in the output of a
system when two or more frequencies enter the input simultaneously.

Joint probability distribution

Expression of the probability of simultaneous occurrence of values of
two or more quantities.

Lag
A difference in time (epoch) of two events or values considered to-
gether.

Lag window

A function of lag, vanishing outside a finite interval, and either mul-
tiplying or regarded as multiplying the quantities of a family of quantities
with differing lags.

Lagged product

The product of two values corresponding to different times. (In a
mean lagged product the lags are usually all the same.)

Lead
The negative of lag.
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Line (in a power spectrum)

Theoretically, and as used in this paper, a finite contribution asso-
ciated with a single frequency. Physically, not used here, a finite con-
tribution associated with a very narrow spectral region.

Lobe

A bulge, positive or negative, especially in a spectral window. (In most
spectral windows, a large central main lobe is surrounded on both sides
by smaller side lobes.)

Mean lagged product

The (arithmetic) mean of products of equally lagged guantities.

Moving linear combination

A transformation expressing the values of an output time series as
linear combinations of values of the input series in specified relations of
lag (or lead).

Negative frequencics

When sines and cosines are jointly represented by two imaginary ex-
ponentials, one has a positive frequency and the other a negative fre-
quency. (Not specifiable for a single time function in real terms.)
Network (linear)

In this account, an otherwise unspecified physical device which con-
verts an input function (of continuous time) linearly into an output fune-
tion (of continuous time).

Noise

In general, an undesired time-function, or component of a function.
Non-normality

Tailure to follow a normal or Gaussian distribution.

Normality

The property of following a normal or Gaussian distribution.

Nyquist frequency

The lowest frequency coinciding with one of its own aliases, the re-
ciprocal of twice the time interval between values (same as folding fre-
quency).
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Octave
An interval of frequencies, the highest of which is double the lowest.

Pilot (analysts or estimation)

A process yielding rough estimates of spectral density intended mainly
as a basis for planning more complete and precise analyses.

Population

A collection of objects (in particular, of numbers or of functions), with
probabilities attached to relevant subcollections.

Power transfer function

The function expressing the ratio of output power near a given fre-
quency to the input power near that frequency.

Power-variance spectrum

A function of frequency, in terms of which the variances and covari-
ances of a family of spectral estimates can be expressed in standard
form. (See 6 and 14 for details in the continuous and equi-spaced
cases, respectively.)

Preemphasis
Tmphasis of certain frequencies (in comparison with others), before
processing, as an aid to the quality of result.

Prewhitening

Preemphasis designed to make the spectral density more nearly con-
stant (the spectrum more nearly flat).

Principal alias

An alias falling between zero and plus or minus the folding or Ny-
quist frequency.

Process (random or stochastic)

An ensemble of functions. (Often composed of functions of time re-
garded as unfolding or developing.)

Protection ralio

The ratio of transmission at a desired frequency to the transmission
at an undesired alias of that frequency.
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Recording

Is spaced when originally taken at equal intervals, mized when taken
continuously and processed at equal intervals, eonfinuous when taken
and processed on a continuous basis.
Resolution

A measure of the concentration of a spectral estimate expressed in
frequency units, here taken (for the important cases) as equal to the
width of the major lobe. (See B.23.)
Resolved bands (number of)

The ratio of the Nyquist or folding frequency to the resolution.

Sampling theorem (of information theory)

Nyquist’s result that equi-spaced data, with two or more points per cycle
of highest frequency, allows reconstruction of band-limited functions.
(See Cardinal theorem.)

Serial correlation coefficients

Ratios of the autocovariances to the variance of a process, ensemble,
ete.
Stgnal

A time function desired as (potentially) carrying intelligence.

“Signal”

A funection of continuous time, which may be either a signal, a noise,
or a combination of both. (Contrasted with data, a function of discrete
time.)

Single function approach

A mode of representing certain ensembles by the translations of a
single time function (in single function terms).
Smoothed function

The result of weighted averaging of nearby values of the original
funetion.
Smoothing

In the narrow sense, forming (continuous or discrete) moving linear
combinations with unit total weight.
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Smoothing and decimation procedure

A procedure which may be regarded as the formation of discrete mov-
ing linear combinations, followed by the omission of all but every kth
such. (See 17 and B.17.)

Spectrum (also power spectrum)

An expression of the second moments of an ensemble, process, ete. (i)
in terms of frequencies, (ii) in such a form as to diagonalize the effects
on second moments of time-invariant linear transformations applied to
the ensemble or process. (adjective: spectral).

Spectrum, aliased

Tor equally spaced data, the principal part of the aliased spectrum
expresses contributions to the variance in terms of frequencies between
zero and the Nyquist or folding frequency, all contributions from fre-
quencies having the same principal alias and sign having been combined
by addition. (The aliased spectrum repeats the principal part periodically
with period 2fy . See 14.)

Spectral densily

A value of a function (or the entire function) whose integral over any
frequency interval represents the contribution to the variance from that

frequency interval.

Spectral density estimates

Estimates of spectral density, termed raw when obtained from equi-
spaced mean lagged products by cosine series transformation, refined
when hanned or hammed from raw estimates or obtained by an equiva-
lent process. (See B.13.)

Spectral window

A function of frequency expressing the contribution of the spectral
density at each frequency to the average value of an estimate of
(smoothed) spectral density.

Stationary (ensemble or random process)

An ensemble of time functions (or random process) is stationary if
any translation of the time origin leaves its statistical properties un-
affected.
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Superposttion theorem

A statement that the output of a linear device is the convolution of its
input with its impulse response. (See B.2.)
Temporally homogeneous

Sometimes used in place of stationary, especially when speaking of
stochastic processes.
Transfer function

The transfer function of a network or other linear device is a complex-
valued function expressing the amplitude and phase changes suffered by
cosinusoidal inputs in becoming outputs. {(See A.5.) The square of the
absolute value of the transfer function is the power fransfer function,
which expresses the factors by which spectral densities are changed as
inputs become outputs. (See 4.)

Transmission

The coefficient with which power at a given frequency contributes to
power at the (new) principal alias as a result of the application of a
smoothing and decimation procedure.
Transversal filtering

Time domain filtering by forming linear combinations of lagged values,
use of moving linear combinations for filtering. (See Kallmann® for the
origin of this term.)
Trend

A systematic, smooth component of a time function (time series), as,
for example, a linear function of time (a linear trend).
True

Often used to refer to average values over the ensemble, as contrasted
with mean values over the observations.
Universe

A collection of objects (numbers, functions, ete.) with probabilities
attached to relevant subcollections.
Variance

A quadratic measure of variability, the average squared deviation
from the average.
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W hite noise

An ensemble whose spectral density is sensibly constant from zero
frequency through the frequencies of interest (in equi-spaced situations,
up to the folding or Nyquist frequency). (The values of equi-spaced
white noise at different times are independent.)

Window

A function expressing, as a multiplicative factor, the tendency or
possibility of the various values of some function to enter into some
caleulation or contribute to the average value of some quantity. (See
data, lag, spectral, ete. for specific instances.)

Windowless quadratic

A quadratic expression is windowless if its average value vanishes
for every stationary ensemble of finite variance (See B.19).

Window pair

Two windows related by a FFourier transformation, as lag and spectral
windows or data and frequency windows. (See A.4 and 4.)

Zero-frequency waves (cosine and sine)

The limiting forms of very-low-frequency cosinusoids, namely con-
stants and linear trends. (See 19.)
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